TABLE OF CONTENTS

CHAPTER 1:	INTR	ODUCTION	1-1
1.1	Purpo	se of Document	1-1
1.2		riew of Appliance Standards	
1.3		riew of Central Air Conditioner and Heat Pump Standards	
1.4		ure of the Document	
CHAPTER 2.	ΔΝΔΙ	LYTICAL FRAMEWORK	2-1
2.1		ground	
2.2		ninary Market and Technology Assessment	
2.2	2.2.1	Market Assessment	
	2.2.1	Technology Assessment	
		Preliminary Base Case Shipments Forecast	
2.3		ning Analysis	
2.5	2.3.1	Product Classes	
	2.3.1	Baseline Units	
	2.3.3	Technology Screening	
2.4		eering Analysis	
2.4	2.4.1	Efficiency Improvement Potential	
	2.7.1	2.4.1.1 Efficiency Level Approach	
		2.4.1.2 Reverse Engineering Approach	
		2.4.1.3 Design Option Approach	
		2.4.1.4 Outside Regulatory Changes affecting the Engineering	2 0
		Analysis	2-9
	2.4.2	Manufacturer Costs	
	2.1.2	2.4.2.1 Characterizing Uncertainty	
		2.4.2.2 Variability in Costs between Manufacturers	
		2.4.3.3 Proprietary Design	
2.5	Life-C	Cycle Cost (LCC) and Payback Analysis	
2.0		LCC Spreadsheet Model	
		Equipment Prices	
2.6		ninary National Impacts Analysis	
_,,		National Energy Savings (NES) Spreadsheet Model	
	2.6.2	Shipments	
	2.6.3	Net National Employment Impacts	
2.7		imer Analysis	
,	2.7.1	Purchase Price Increases	
	2.7.2	Consumer Participation	
2.8		facturer Impact Analysis	
2.0	2.8.1	Industry Characterization	
	2.8.2	Industry Cash Flow	
	2.8.3	Manufacturer Sub-Group Analysis	

	2.8.4 Interview Process	2-17
2.9	Competitive Impact Assessment	
2.10	Utility Analysis	2-18
2.11	Environmental Analysis	
2.12	Regulatory Impact Analysis	2-19
CHAPTER 3:	SCREENING OF DESIGN OPTIONS	3-1
CHAPTER 4:	ENGINEERING ANALYSIS	4-1
4.1	Description of Baseline Unit	4-3
4.2	Manufacturing Costs	4-4
	4.2.1 Visits to Manufacturers and Component Suppliers	
	4.2.2 Selecting Representative Equipment	4-5
	4.2.3 Disassembly and Inspection of Sample Equipment	4-6
	4.2.4 Modeling the Production Facility	4-7
	4.2.5 Compensating for the Commoditization Effect of Efficiency	
	Standards on Baseline Equipment	4-8
	4.2.6 Estimating Parts, Assembly, and Overhead Costs	
	4.2.7 Generating Production Cost Results	
	4.2.8 Outbound Freight	
	4.2.9 Industry Review	4-13
	4.2.9.1 ARI Results	
	4.2.9.2 Second ARI Review	
	4.2.10 Comparison Between Reverse Engineering and ARI Relative Costs	4-14
	4.2.11 Validation of ARI Results	
4.3	Markups	
	4.3.1 Description of Distribution Chain	
	4.3.2 Determination of the Manufacturer Markup	
	4.3.3 Determination of Distributor Markup	
	4.3.4 Determination of Builder Markup	
	4.3.5 Determination of Dealer Markup	
	4.3.6 Determination of Sales Tax	
	4.3.7 Overall Markup	
4.4	Max Tech	
	4.4.1 The Vapor Compression Cycle	
	4.4.2 Technically Feasible Efficiencies	
	4.4.2.1 Carnot Efficiency	
	4.4.2.2 Practical Barriers to Carnot Cycle Equipment	
	4.4.2.3 Irreversibilities	
	4.4.2.4 Practical Barriers to Eliminating Irreversibilities	
	4.4.2.5 Parasitics	
	4.4.2.6 Practical Barriers to Eliminating Parasitic Losses	
	4.4.2.7 Max Tech	
	4.4.3 Commercially Practical Efficiencies	

	4.4.4	Prospects for Near-Term Efficiency Gains	4-28
	4.4.5	Not-in-kind Cooling Technologies	
4.5	Emerg	ging Technologies	4-29
	4.5.1	Technological Advances to be Considered	4-30
		4.5.1.1 Variable Speed Motor Controls	4-30
		4.5.1.2 Advanced Compressors	4-31
		4.5.1.3 Microchannel Heat Exchangers	4-32
	4.5.2	Potential Cost Impacts of Emerging Technologies	4-33
	4.5.3	Potential of Emerging Technologies to Benefit Niche Products	4-37
	4.5.4	Issues Associated with Proprietary Technologies	4-37
4.6	Produ	ct Classifications	
	4.6.1	The Case for Eliminating or Combining Existing Classes	4-37
		4.6.1.1 Heat Pump versus Cooling-only	4-37
		4.6.1.2 Split versus Packaged	4-38
	4.6.2	The Case for Creating Additional Classes	
		4.6.2.1 Classes for Different Cooling and Heating Capacities	4-39
		4.6.2.2 Classes for Niche Products	4-42
		4.6.2.2.1 Ductless Splits	
		4.6.2.2.2 High Velocity, Small Duct	
		4.6.2.2.3 Vertical Packaged, Wall Mounted	
		4.6.2.2.4 Through-the-wall Condenser	
		4.6.2.2.5 Through-the-wall Packaged	
		4.6.2.3 Description of Niche Product Constraints	4-44
		4.6.2.3.1 Small Cabinet Size	
		4.6.2.3.2 Poor Airflow Configuration	
		4.6.2.3.3 High Static Pressure	
		4.6.2.3.4 Low Evaporator Discharge Temperature	
		4.6.2.4 Remedies for Niche Product Constraints	
		4.6.2.4.1 More Efficient Components	
		4.6.2.4.2 Larger Cabinet Size	
		4.6.2.4.3 Large Cabinet Size	
		4.6.2.4.4 Modifications for Testing	
		4.6.2.4.5 Redefinition	
		4.6.2.5 Justification for New Classes Based on Niche Products	
	4.6.3	Possible Loopholes Created by Product Class Definitions	
4.7		native Refrigerants	4-49
4.8		Analyses in the Engineering Analysis	4-50
	4.8.1	Definition of the Relationship between SEER and HSPF in	
		Heat Pumps	
	4.8.2	Repair versus Replace	
4.9		lishing a Minimum EER (95°F) Requirement	
	4.9.1	Current Relationship between SEER and EER	
	4.9.2	The Effect of Refrigerant Choice on EER and SEER	
	4.9.3	Options for Possible EER Standards	4-57

	4.9.4	EER-SEER Relationship in Current Equipment	. 4-58
CHAPTER 5:	LIFE-	CYCLE COST and PAYBACK PERIOD ANALYSIS	5-1
5.1	Introd	luction	5-1
	5.1.1	General Approach for LCC and PBP Analysis	5-1
	5.1.2	Overview of LCC, PBP, and Rebuttable PBP Inputs	
	5.1.3	Use of Residential Energy Consumption Survey (RECS) in LCC and	
		PBP Analysis	
	5.1.4	Commercial Building Analysis	5-7
5.2	Life-C	Cycle Cost (LCC)	
	5.2.1	Definition	5-8
	5.2.2	Total Installed Cost Inputs	5-9
		5.2.2.1 Baseline Manufacturer Cost	
		5.2.2.2 Standard-level Manufacturer Cost Multipliers	. 5-11
		5.2.2.3 Manufacturer Markup	
		5.2.2.4 Distributor Markup	
		5.2.2.5 Dealer Markup	
		5.2.2.6 Builder Markup	
		5.2.2.7 Sales Tax	
		5.2.2.8 Installation Cost	
		5.2.2.9 Weighted-Average Total Installed Costs	. 5-18
	5.2.3	Operating Cost Inputs	
		5.2.3.1 Baseline Annual Space-Cooling Energy Use	
		5.2.3.2 Standard-Level Annual Space-Cooling Energy Use	. 5-37
		5.2.3.3 Baseline Annual Space-Heating Energy Use	
		5.2.3.4 Standard-Level Annual Space-Heating Energy Use	
		5.2.3.5 Average Electricity Price	
		5.2.3.6 Marginal Electricity Price	
		5.2.3.7 Electricity Price Trend	
		5.2.3.8 Repair Cost	. 5-66
		5.2.3.9 Maintenance Cost	
		5.2.3.10 Lifetime and Compressor Replacement Cost	. 5-69
		5.2.3.11 Discount Rate	
		5.2.3.12 Effective Date of Standard	. 5-76
		5.2.3.13 Base Case Design	. 5-76
		5.2.3.14 Standard Case Design	
	5.2.4	LCC Results	
		5.2.4.1 LCC Breakdown based upon Average Input Values	. 5-77
		5.2.4.2 Baseline LCC Distributions	
		5.2.4.3 Change in LCC Results	
		5.2.4.4 LCC Results based on ±2% Threshold	
		5.2.4.5 LCC Scenarios	. 5-93
5.3	Distril	bution of Payback Period	
		•	5-103

	5.3.2	Inputs	5-103
	5.3.3	Payback Period Results	5-103
5.4	Rebutt	able Payback Period	5-109
	5.4.1	Metric	5-109
	5.4.2	Inputs	5-110
	5.4.3	Rebuttable Payback Period Results	5-110
5.5	User I	nstructions for Spreadsheets	5-114
CHAPTER 6	: SHIPN	MENTS ANALYSIS	6-1
6.1	Introdu	uction	
	6.1.1	Definition of Market Segments and Ownership Categories	
	6.1.2	Shipment Model Features	
	6.1.3	Review of Other Published Research	6-5
6.2	Metho	d	6-6
	6.2.1	Definitions	6-6
		6.2.1.1 Stock	6-6
		6.2.1.2 Events	
		6.2.1.3 Decisions	6-7
	6.2.2	Purchases from New Housing	
		6.2.2.1 Definition	
		6.2.2.2 Approach	
		6.2.2.3 Current Assumptions	
	6.2.3	Existing Housing with a Regular CAC-HP	
		6.2.3.1 Definition	
		6.2.3.2 Approach	
		6.2.3.3 Current Assumptions	
	6.2.4	Remodeled Households	
		6.2.4.1 Definition	
		6.2.4.2 Approach	
		6.2.4.3 Current Assumptions	
	6.2.5	Housing with an Extended-Life CAC-HP	
		6.2.5.1 Definition	
		6.2.5.2 Approach	
		6.2.5.3 Current Assumptions	
	6.2.6	Accounting Equations	
6.3	Model		
	6.3.1	Logit Probability of Purchase Model	
		6.3.1.1 Logit Equation	
	6.3.2	Determination of Market Shares	
		6.3.2.1 Eligible Market Share for AC	
		6.3.2.2 Market Share for CAC versus HP	
		6.3.2.3 Market Share of Split vs. Package systems	
	(2 2	6.3.2.4 Regional Market Shares	
	6.3.3	Price	6-26

	6.3.2.1 Average Price Accounting	6-26
	6.3.2.2 Historical Operating Cost Estimates	6-27
	6.3.2.3 Post-Standard Price Scenarios	
	6.3.4 Model Calibration	
	6.3.2.1 Remodels for Early Replacments	6-28
	6.3.2.2 Market Discount Rate	
	6.3.2.3 Price/Income Elasticity	6-28
	6.3.2.4 Evaluation of Fuel Switching Elasticity	
	6.3.2.5 Regional Shift Effects	
6.4	Results	
	6.4.1 Trial Standard Levels	6-30
	6.4.2 Shipment Results	6-31
	6.4.2.1 Sensitivity to AEO2000 Forecasts	6-33
	6.4.3 Shipment Scenarios	6-34
	6.4.3.1 Manufacturer Cost Scenario	6-34
	6.4.3.2 Lifetime Scenario	6-35
	6.4.4 Sales and Shipments Impacts of Efficiency-Induced Price Changes .	6-36
	6.4.5 Impacts on Mean Age, Mean Lifetime, Early Replacements, and	
	Total Repairs of CAC-HP	6-39
CHAPTER 7:	NATIONAL IMPACTS ANALYSIS	. 7-1
7.1	Introduction	
	7.1.1 Methodology and Definitions	. 7-1
7.2	National Energy Savings (NES)	. 7-2
	7.2.1 NES Definition	
	7.2.2 NES Inputs	
	7.2.2.1 National Annual Energy Consumption (AEC)	
	7.2.2.2 National Energy Savings (<i>NES</i>)	. 7-4
	7.2.2.3 Source Conversion Factor	. 7-4
	7.2.2.4 Stock of Air Conditioners and Heat Pumps by Vintage	
	$(STOCK_{V})$	
	7.2.2.5 Annual Energy per Unit (<i>UEC</i>)	
	7.2.2.6 Shipments	
	7.2.3 Results	
7.3	Net Present Value (NPV)	
	7.3.1 NPV Definition	
	7.3.2 NPV Inputs	
	7.3.2.1 Discount Factor	
	7.3.2.2 Present Value of Costs (<i>PVC</i>)	
	7.3.2.3 Present Value of Savings (<i>PVS</i>)	
	7.3.2.4 Total Equipment Cost	
	7.3.2.5 Total Operating Cost Savings	
7.4	NES and NPV Results	
	7.4.1 Assumptions	7-19

		7.4.2	Trial Standard Levels	. 7-21
		7.4.3	NES Results	. 7-22
			7.4.3.1 NES Sensitivity to AEO2000 Forecasts	. 7-23
		7.4.4	Annual Costs and Savings	. 7-25
		7.4.5	NPV Results	
			7.4.5.1 NPV Sensitivity to AEO2000 Forecasts	. 7-30
		7.4.6	NES and NPV Scenarios	. 7-33
			7.4.6.1 Manufacturer Cost Scenario	. 7-33
			7.4.6.2 Lifetime Scenario	
			7.4.6.3 Discount Rate Scenario	7-41
		7.4.7	NES and NPV Results as shown in Spreadsheet Model	7-44
	7.5	User In	nstructions for Spreadsheet	7-46
CHAP'	TER 8:		JFACTURER IMPACT ANALYSIS	
	8.1		acturer Impact Analysis Methodology	
			Phase 1: Industry Profile	
		8.1.2	Phase 2: Industry Cash Flow Analysis	
		8.1.3	Phase 3: Sub-Group Impact Analysis	
			8.1.3.1 Major Manufacturer Sub-Groups	
			8.1.3.2 Small Manufacturer Sub-Group	
			8.1.3.3 Compressor Supplier Sub-Group	
	8.2	Industr	y Profile	
		8.2.1	Product Classes	
		8.2.2	Market Shares and Distribution	
		8.2.3	Sales	
		8.2.4	Price Trends	
	8.3		Inputs and Assumptions	
		8.3.1	Sources of GRIM Inputs	
		8.3.2	Overview of the GRIM	
		8.3.3	Financial Parameters	
		8.3.4	Corporate Discount Rate	
		8.3.5	Shipments	
		8.3.6	Production Costs	
		8.3.7	Markups	
		8.3.8	Conversion Costs	
			8.3.8.1 Capital Expenditures	
			8.3.8.2 Non-capital Expenditures	
	8.4		ry Financial Impacts	
		8.4.1	Scenarios	
		8.4.2	Trial Standard Levels	
		8.4.3	Manufacturer Subgroups	
		8.4.4	Impacts on Industry Net Present Value (INPV)	
		8.4.5	Impacts on Return on Invested Capital (ROIC)	
		846	Impacts on Annual Cash Flow	8-30

		8.4.7	1 5	
		8.4.8	Efficiency Scenario Assessment	
	8.5	_	oup Impacts	8-41
		8.5.1	Major Manufacturer Subgroups Lower Operating Cost and Higher	
			Operating Cost	
			8.5.1.1 Differences in Assumptions between the Subgroups	
			8.5.1.2 Net Present Value Impacts	
			8.5.1.2.1 Lower Operating Cost Subgroup NPV Results	8-45
			8.5.1.2.2 Higher Operating Cost Subgroup NPV Results	8-46
			8.5.1.3 Impacts on Return on Invested Capital (ROIC)	8-47
			8.5.1.4 Impacts on Annual Cash Flow	8-49
			8.5.1.4.1 Lower Operating Cost Subgroup Cash Flow	
			Results	8-49
			8.5.1.4.2 Higher Operating Cost Subgroup Cash Flow	
			Results	8-51
			8.5.1.5 Summary of Impacts on Major Manufacturer Subgroups	8-53
		8.5.2	Niche Product Manufacturer Subgroup	8-54
		8.5.3	Compressor Supplier Subgroup	8-55
	8.6	Other 1	Impacts	
		8.6.1	Employment	8-56
		8.6.2	Production Capacity	8-57
		8.6.3	Exports	8-57
		8.6.4	Cumulative Regulatory Burden	
			8.6.4.1 Federal Regulations on Central Air Conditioners and other	
			Products Produced by the Same Manufacturers	8-58
			8.6.4.2 Pending Regulations and Regulations at the State Level	
	8.7	Conclu	asions	
		8.7.1	Trial Standard Level 1 (TSL 1)	8-63
		8.7.2	Trial Standard Level 2 (TSL 2)	
		8.7.3	Trial Standard Level 3 (TSL 3)	
		8.7.4	Trial Standard Level 4 (TSL 4)	
			` ,	
CHAP'	TER 9:	COMP	ETITIVE IMPACT ANALYSIS	. 9-1
	9.1	Introdu	uction	. 9-1
	9.2		dology	
	9.3		S	
CHAP'	TER 10	: CONS	SUMER SUB-GROUP ANALYSIS	10-1
	10.1	Introdu	uction	10-1
	10.2	Sub-G	roup Analysis Defined	
			Inputs to the Life-Cycle Cost and Payback Period Sub-Group	
			Analysis	10-1
		10.2.2	Life-Cycle Cost and Payback Period Consumer Sub-Group Results .	
		-	,	

CHAPTER 1	1: UTILITY IMPACTS ANALYSIS	11-1
11.1	Summary	11-1
11.2	Purpose of the Analysis	11-1
11.3	Assumptions	11-2
11.4	Methods	11-3
11.5	Results	11-4
	11.5.1 Central Air Conditioner and Heat Pump Standard Level Results	11-4
	11.5.2 Economic Growth Cases	
CHAPTER 1	2: NET NATIONAL EMPLOYMENT IMPACT ANALYSIS	12-1
APPENDIX	A: APPROACH FOR UNCERTAINTY AND VARIABILITY	A-1
A.1	Introduction	
A.2	Uncertainty	
A.3	Variability	
A.4	Approaches to Uncertainty and Variability	
A.5	Probability Analysis and the Use of Crystal Ball	
11.5	1 100domity Thiarysis and the OSC of Crystal Ban	,
APPENDIX	B: DETAILED REVERSE ENGINEERING COST ESTIMATES AND EQUIPMENT DATA	B-1
APPENDIX	C: TECHNICAL DESCRIPTION OF THE REVERSE ENGINEERING CO	
	ESTIMATION METHODOLOGY	
C.1	Introduction	
C.2	Tear-Downs	
	C.2.1 Split Air Conditioner Tear-down	
	C.2.2 Packaged Heat Pump Tear-Down	
	C.2.3 Confirming the Tear-Down Results	
C.3	Selecting Additional Equipment Samples	
C.4	Creating the Bill-of-Materials	
C.5	Additional Production Cost Data	
	C.5.1 Labor and Factory Overhead	
	C.5.2 Depreciation	
	C.5.3 Parts and Materials	C-8
	C.5.4 Coil Fabrication Costs	C - 9
C.6	Structure of the Cost Models	C - 9
	C.6.1 Main Cost Model	C - 9
	C.6.1.1 Global Controls Sheet	C-10
	C.6.1.2 Manufacturer Data Sheet	C-11
	C.6.1.3 Purchased Parts Sheet	C-12
	C.6.1.4 Bill-of-Materials Sheet	C-13
	C.6.1.5 Equipment Data Sheet	
	C.6.2 Coil Model	

APPENDIX I	D: ESTIMATION OF THE DISTRIBUTOR/WHOLESALER AND	
	DEALER/CONTRACTOR MARKUPS ON INCREMENTAL CENTRAL	
	AIR CONDITIONER AND HEAT PUMP COSTS	D-1
D.1	Introduction	D-1
D.2	Comparison of Supplemental ANOPR and NOPR Markup Calculations	
D.3	Average, Disaggregated, and Incremental Markups	D-4
D.4	Analysis of Financial Statements	
	D.4.1 Distributors	
	D.4.2 Dealers/Contractors	D-7
D.5	Econometric Analysis of U.S. Census Bureau Data	
	D.5.1 Distributor Markups	
	D.5.2 Dealer Markups	D-10
D.6	Sensitivity of Test of Marginal Markup Measurements	D-11
D.7	Summary of Results	
D.8	Conclusion	D-14
APPENDIX I	E: LIFE-CYCLE COST RESULTS AND DETERMINATION OF 30-YEAR	
	AVERAGE COOLING DEGREE DAY AND HEATING DEGREE DAY	
	DATA	. E-1
E.1	Life-Cycle Cost Results	. E-1
	E.1.1 Split System Air Conditioner Results	. E-2
	E.1.2 Split System Heat Pump Results	. E-6
	E.1.3 Single Package Air Conditioner Results	
	E.1.4 Single Package Heat Pump Results	E-14
E.2	Determination of 30-year Average Cooling Degree Day and Heating Degree	
	Day Data	E-18
APPENDIX I	F: NATIONAL ENERGY SAVINGS AND NATIONAL NET PRESENT	Б. 1
P 4	VALUE RESULTS	
F.1	Split System Central Air Conditioners	
F.2	Split System Heat Pumps	
F.3	Single Package System Central Air Conditioners	
F.4	Single Package System Heat Pumps	F-14
APPENDIX (G: GOVERNMENT REGULATORY IMPACT MODEL (GRIM)	G-1
G.1	Introduction and Purpose	G-1
G.2	Model Description	G-1
G.3	Sample Income Statement	
APPENDIX I	H: INTERPOLATION OF UTILITY AND ENVIRONMENTAL RESULTS	
	FROM NEMS-BRS OUTPUT	H-1
APPENDIX I	E ERRATA APPENDIX (RESERVED)	. I-1

APPENDIX J	J: SUPPLEMENTAL APPENDIX	J-1
J.1	Supplemental Tables to Chapter 5	
J.2	Supplemental Tables and Figures to Chapter 7	
J.3	Supplemental Tables to Chapter 8	
J.4	Supplemental Tables to Chapter 10	
J.5	Supplemental Tables to Chapter 11	J-38
J.6	Supplemental Tables and Figures to Chapter 12	J-51
J.7	Supplemental Figures to Appendix E	J-54
J.8	Supplemental Tables and Figures to Appendix F	J-70
APPENDIX I	K: LIST OF ACRONYMS AND ABBREVIATIONS	K-1
APPENDIX I	L: THROUGH-THE-WALL PRODUCTS	L-1
L.1	Introduction	
L.2	Engineering Analysis	
	L.2.1 Physical Characteristics of Baseline Products	
	L.2.2 Modeling TTW Efficiency	
	L.2.3 Design Options	
	L.2.3.1 General Approach to Evaluating Design Options	
	L.2.3.2 Discussion of Individual Design Options	
	L.2.3.2.1 Reduce Cabinet/Panel Air Leakage	
	L.2.3.2.1.1 Air Leakage in SAC 1.5 Ton Unit.	
	L.2.3.2.1.2 Air Leakage in SAC 2.5 Ton Unit.	
	L.2.3.2.1.3 Air Leakage in PAC Ton Unit	
	L.2.3.2.1.4 Results of Air-Leakage Evaluation	
	L.2.3.2.2 Dual Condenser Blowers	
	L.2.3.2.3 Increase Condenser Blower Outlet Area	
	L.2.3.2.4 Increase Condenser Airflow Rate	
	L.2.3.2.5 Improve Condenser Airflow Distribution	
	L.2.3.2.6 Reduce Condenser Air Recirculation	
	L.2.3.2.7 Higher-Efficiency Compressor	
	L.2.3.2.8 Mount Condenser Fan above Condenser	
	L.2.3.2.9 Mount Dual Fans Above Condenser L.2.3.2.10 Taller Condenser	
	L.2.3.2.10 Taner Condenser L.2.3.2.11 Higher-Efficiency Condenser Fan Motor	
	L.2.3.2.12 Improve Evaporator Airflow Distribution L.2.3.2.13 Improve Evaporator Refrigerant Distribution	
	L.2.4 Estimated Manufactured-Cost Impacts	
	L.2.5 Summary of Performance-Improvement Options and Manufactured	
	Impacts	
L.3	Life-Cycle Cost Analysis	
L. <i>3</i>	L.3.1 Inputs to the LCC Analysis	
	L.3.1.1 Baseline and Standard-Level Manufacturing Costs	
	L.3.1.2 Compressor Replacement Costs	
		0

	L.3.1.3 Multi-Familiy Households: Annual En	
	Efficiency, and Electricity Prices	L-20
	L.3.2 LCC Results	L-21
	L.3.2.1 Baseline LCC	L-21
	L.3.2.2 Change in LCC	L-22
	L.3.2.3 LCC Results based on $\pm 2\%$ Threshold	L-24
APPENDIX	M: REVISED UTILITY IMPACTS ANALYSIS AND E	
3.6.1	ASSESSMENT	
M.1	Introduction	
M.2	Reason for Revising Analyses	
M.3	Revised Results	
	M.3.1 Revised Utility Impact Results	
	M.3.1.1 Central Air Conditioner and Heat Pum	
	Results	
	M.3.2 Revised Environmental Assessment Results	
M.4	Marginal Heat Rate Estimates	M-16
	M.4.1 Competing Effects	M-16
	M.4.2 CAC-HP Example	M-17
	M.4.3 Interpolation	
	M.4.3.1 Average Heat Rate and Slowed Invest	ment Effect M-18
	M.4.3.2 MHR Linearity	
	M.4.3.3 MHR Comparisons	
APPENDIX	N: SMALL DUCT, HIGH VELOCITY SYSTEMS (RES	SERVED) N-1
REGULATO	ORY IMPACT ANALYSIS	
1.	Introduction	RIA-1
2.	Methodology	
2.	2.1 No New Regulatory Action	
	2.2 Informational Action	
	2.2.1 Consumer Product Labeling	
	2.2.2 Public Education	
	2.3 Prescriptive Standards	
	1	
	2.4 Financial Incentives	
	2.4.1 Tax Credits to Consumers	
	2.4.2 Tax Credits to Manufacturers	
	2.4.3 Consumer Rebates	
	2.4.4 Low Income Subsidy	
	2.5 Voluntary Efficiency Targets	
	2.6 Mass Government Purchases	
3	Results	RIA-5

LIST OF TABLES

Table 1.1	Central Air Conditioner and Heat Pump Analyses under Process Rule	1-4
Table 2.1	Non-Regulatory Alternatives to Standards	. 2-20
Table 4.1	NAECA Minimum Efficiencies for Unitary Products	
	18,000 BTU/hr - 65,000 BTU/hr	4-3
Table 4.2	Sources of Design Information	4-5
Table 4.3	Breakdown of Equipment Subjected to Cost Estimation Analysis	4-6
Table 4.4	Production Facility Specifications	4-7
Table 4.5	Examples of Product Attributes Related to Efficiency	4-9
Table 4.6	Production Cost Assumptions	. 4-10
Table 4.7	Revised Reverse Engineering Production Cost Estimates for 3-ton	
	Unitary Equipment	. 4-12
Table 4.8	Revised Reverse Engineering Production Cost Multipliers for 3-ton	
	Unitary Equipment	. 4-12
Table 4.9	Comparison of Revised Reverse Engineering Cost Estimates and ARI	
	Relative Unitary Production Costs - 3-ton	. 4-16
Table 4.10	Manufacturer Gross Margins and Markups	
Table 4.11	Distributor Median Gross Margins and Markups	
Table 4.12	Distributor Markups used in the Analysis for each Standard Level	
Table 4.13	Distribution of 1994 Unitary Shipments at Various Sales Tax Rates	
Table 4.14	Average Markups on Baseline Residential Air Conditioners	
Table 4.15	Sources of Irreversibility in a Conventional Refrigerator	
Table 4.16	Key Assumptions used to Derive Emerging Technology System	
	Cost Estimates	. 4-34
Table 4.17	Potential Impact of Emerging Technologies on the Production Cost of 3-ton	
	Split Air Conditioners with Fancoils by 2007	
Table 4.18	Estimated Likelihood of Commercial Dominance in Baseline Equipment	
	by 2006 Under Various Standard Levels	. 4-36
Table 4.19	Estimated Likelihood of Commercial Dominance in Premium Equipment	
	by 2006 Under Various Standard Levels	. 4-36
Table 4.20	Available Packaged Systems Models Rated at and below 10 SEER	
Table 4.21	Shipments of Residential Unitary Condensers by Capacity (1996)	
Table 4.22	Characteristics of Niche Products	
Table 4.23	Assessment of Factors that Influence the Decision to Establish Separate	
	Classes for Niche Products	. 4-48
Table 4.24	Comparison of Proposed HSPF Standard Levels with Median HSPF's of	
-	Equipment Listed in the ARI Unitary Directory	. 4-52
Table 4.25	Prevalence of HSPF Ratings by SEER Level for 3-ton Split Heat Pumps	
	with Impacts of Suggested HSPF Standards	. 4-53

Table 4.26	Equipment Life Extension Resulting in Increased National Energy Consumption	4-54
Table 4.27	Distribution of Energy Efficiency Ratios (EERs) in Residential Unitary	4-54
1 4010 4.27	Products	4-59
Table 5.1	Inputs for Total Installed Costs	5-10
Table 5.2	Baseline Manufacturing Costs	5-10
Table 5.3	ARI Standard-Level Manufacturer Cost Multipliers	5-11
Table 5.4	Cumulative Probability Distribution of Distributor/Wholesaler Markups	5-14
Table 5.5	Cumulative Probability Distribution of Dealer/Contractor Markups	5-15
Table 5.6	Baseline Installation Costs	5-18
Table 5.7	Costs and Markups for Determination of Weighted-Average Total Installed	5 10
Table 5.8	Costs	5-19 5-20
Table 5.9	and Heat Pumps	
	Inputs for Operating Costs	
Table 5.10	Census Division and Four Large State 30-year Average CDD	
Table 5.11	Shipments Weighted SEERs of Unitary Air Conditioners and Heat Pumps	3-32
Table 5.12	Space-Cooling FLEOHs for Commercial Buildings utilizing Residential- Size Space-Cooling Equipment (hours)	5-34
Table 5.13	Baseline Annual Space-Cooling Energy Use for Commercial Buildings	
	utilizing Residential-Size Space-Cooling Equipment (kWh/yr)	5-35
Table 5.14	Fraction of Building Stock utilizing Residential-Size Space-Cooling	
	Equipment	5-36
Table 5.15	Residential Central Air Conditioner and Heat Pump Annual Space-Cooling	5 20
T-1-1- 5 1 6	Energy Use Scaled to SEER	5-39
Table 5.16	Commercial Building Central Air Conditioner and Heat Pump Annual Space-Cooling Energy Use Scaled to SEER	5-39
Table 5.17	Overall Central Air Conditioner and Heat Pump Annual	3-39
Table 3.17	Space-Cooling Energy Use Scaled to SEER	5_40
Table 5.18	Census Division and Four Large State 30-year Average HDD	
Table 5.19	Shipment Weighted HSPFs of Unitary Heat Pumps	
Table 5.19	Space-Heating FLEOHs for Commercial Buildings utilizing Residential-	3-40
1 autc 3.20	Size Space-Cooling Equipment (hours)	5-48
Table 5.21	Baseline Annual Space-Heating Energy Use for Commercial Buildings	J -4 0
1 aute 3.21		5-49
Table 5.22	Fraction of Building Stock utilizing Residential-Size Space-Heating	3-49
1 autc 3.22	Equipment	5-49
Table 5.23	Residential Heat Pump Weighted-Average Annual Space-Heating Energy	3-49
1 aute 3.23	Use Scaled to HSPF	5-52
Table 5.24	Commercial Building Heat Pump Weighted-Average Annual Space-Heating	5-52
1 4016 3.24		5 52
Table 5 25	Energy Use Scaled to HSPF Overall Heat Pump Weighted Average Annual Space Heating Energy	3-33
Table 5.25	Overall Heat Pump Weighted-Average Annual Space-Heating Energy	5 52
	Use Scaled to HSPF	J-J3

Table 5.26	Characterization and Summary of Commercial Electric Utility Sample	5-57
Table 5.27	Prototypical Household Characteristics and Building Load Seasonal	
	Breakdowns	5-61
Table 5.28	Central Air Conditioner and Heat Pump Average Repair Costs	5-67
Table 5.29	Central Air Conditioner and Heat Pump Mean and Median Lifetimes	
Table 5.30	Compressor Replacement Costs	5-71
Table 5.31	Finance Method Shares	5-72
Table 5.32	Annual Interest Rates for Various Financial Assets	5-74
Table 5.33	Real Interest Rates associated with each Finance Method	5-76
Table 5.34	Baseline LCC: Mean, Median, Minimum, and Maximum Values	
Table 5.35	Summary of LCC Results for Split Air Conditioners	
Table 5.36	Summary of LCC Results for Split Heat Pumps	
Table 5.37	Summary of LCC Results for Single Package Air Conditioners	
Table 5.38	Summary of LCC Results for Single Package Heat Pumps	
Table 5.39	Baseline Life-Cycle Costs and Threshold for Significant Impacts	
Table 5.40	LCC Results for Split System Central Air Conditioners	
Table 5.41	LCC Results for Split System Heat Pumps	
Table 5.42	LCC Results for Single Package Central Air Conditioners	
Table 5.43	LCC Results for Single Package Heat Pumps	
Table 5.44	ARI Shipment-Weighted Mean and Revised Reverse Engineering Mean	
	Manufacturer Cost Multipliers	5-93
Table 5.45	LCC Results for Split System A/C – LCC Scenario with Reverse	
14010 0.10	Engineering Manufacturer Costs	5-94
Table 5.46	LCC Results for Split System Heat Pump – LCC Scenario with Reverse	
14010 0.10	Engineering Manufacturer Costs	5-95
Table 5.47	LCC Results for Single Package A/C – LCC Scenario with Reverse	
14010 5.17	Engineering Manufacturer Costs	5-96
Table 5.48	LCC Results for Single Package HP – LCC Scenario with Reverse	
1 4010 3.40	Engineering Manufacturer Costs	5-97
Table 5.49	LCC Results for Split System A/C – LCC Scenario with 14 year	5) 1
14016 3.17	average Lifetime	5-99
Table 5.50	LCC Results for Split System Heat Pump – LCC Scenario with 14 year	
14016 3.30	average Lifetime	5-100
Table 5.51	LCC Results for Single Package A/C – LCC Scenario with 14 year	. 5 100
1 4010 3.31	average Lifetime	5-101
Table 5.52	LCC Results for Single Package HP – LCC Scenario with 14 year	. 3-101
1 4010 3.32	average Lifetime	5-102
Table 5.53	Summary of Payback Period Results for Split Air Conditioners	5-105
Table 5.54	Summary of Payback Period Results for Split Heat Pumps	
Table 5.55	Summary of Payback Results for Single Package Air Conditioners	
Table 5.56	Summary of Payback Results for Single Package Heat Pumps	
Table 5.57	Efficiency Level Market Shares for 1994	
Table 5.57	Summary of Rebuttable PBPs and Inputs for Split System	. 5-110
1 4015 3.30	Air Conditioners	5 112
	All Cultulululus	. J-112

Table 5.59	Summary of Rebuttable PBPs and Inputs for Split System	
	Heat Pumps	5-113
Table 5.60	Summary of Rebuttable PBPs and Inputs for Single Package	
	Air Conditioners	5-113
Table 5.61	Summary of Rebuttable PBPs and Inputs for Single Package	
	Heat Pumps	5-113
Table 6.1	Reasons for Replacing Heat Pumps	
Table 6.2	Shipments Impact from Reverse Engineering Manufacturer Cost Scenario	
Table 6.3	Shipments Impact from 14-year average Lifetime Scenario	6-36
Table 7.1	National Energy Saving Inputs	. 7-3
Table 7.2	Site-to-Source Conversion Factors	. 7-6
Table 7.3	Annual Energy Use and Efficiencies for Residential and Commercial	
	Equipment Stock	. 7-9
Table 7.4	Assumed Product Class Efficiency Distributions for the years 1992	
	through 2006	7-10
Table 7.5	Post-Standard Product Class Efficiency Distributions: 11 SEER	
	Standard-Level	7-11
Table 7.6	Post-Standard Product Class Efficiency Distributions: 12 SEER	
	Standard-Level	7-11
Table 7.7	Post-Standard Product Class Efficiency Distributions: 13 SEER	
	Standard-Level	7-12
Table 7.8	Net Present Value Inputs	7-14
Table 7.9	Mean Purchase Prices for Central Air Conditioners and Heat Pumps	7-17
Table 7.10	NES Model Inputs and Assumptions	7-20
Table 7.11	Cumulative NES Results based on AEO2000 Reference Case (2006-2030) .	7-22
Table 7.12	Cumulative NES Results based on AEO2000 Low Growth	
	Case (2006-2030)	7-23
Table 7.13	Cumulative NES Results based on AEO2000 High Growth	
	Case (2006-2030)	7-24
Table 7.14	Cumulative NPV Results based on AEO2000 Reference Case (2006-2030) .	7-29
Table 7.15	Cumulative NPV Results based on AEO2000 Low Growth	
	Case (2006-2030)	7-30
Table 7.16	Cumulative NPV Results based on AEO2000 High Growth	
	Case (2006-2030)	7-32
Table 7.17	Cumulative NPV Results (2006-2030): Reverse Engineering Manufacturer	
	Cost Scenario	7-36
Table 7.18	Cumulative NPV Results (2006-2030): 14-year Average Lifetime Scenario .	7-39
Table 7.19	Cumulative NPV Results (2006-2030): 3% Discount Rate Scenario	7-42
Table 8.1	Market Shares (%) in the Residential Unitary Industry (1987 - 1999)	. 8-5
Table 8.2	Historical Comparison of Unitary Air Conditioner Producer Price Index	
	(PPI) and the U.S. Gross National Product Deflator	. 8-7

Table 8.3	GRIM Financial Parameters Based on 1994-1998 Weighted Company	0.10
T 11 0 1	Financial Data	
Table 8.4	Cost of Debt Calculation	
Table 8.5	Cost of Equity Calculation	
Table 8.6	Product Costs Used in the GRIM Analysis	
Table 8.7	Manufacturer Markups Used in the GRIM	8-17
Table 8.8		
Table 8.9	Capital Expenditures used in the GRIM (million 1999\$)	8-20
Table 8.10	Industry-wide Capital Expenditures by Product Class used in the GRIM (million 19994)	8-21
Table 8.11	Non-capital Expenses used in the GRIM	8-22
Table 8.12	Scenarios Evaluated in the MIA	8-24
Table 8.13	SEER Requirements for Product Classes in the Trial Standard Levels Evaluated in the MIA	8-24
Table 8.14	Changes in Industry Net Present Value — Industry Relative Cost,	
	18 Year Life, NAECA Efficiency	8-26
Table 8.15	Changes in Industry Net Present Value — Industry Relative Cost,	
	18 Year Life, Roll-up Efficiency	8-27
Table 8.16	Changes in Industry Net Present Value — Industry Relative Cost,	
	18 Year Life, Shift Efficiency Mix	8-27
Table 8.17	Changes in Industry Net Present Value — Industry Relative Cost,	
	14 Year Life, NAECA Efficiency Mix	8-28
Table 8.18	Changes in Industry Net Present Value — Reverse Engineering Relative	
	Cost, 18 Year Life, NAECA Efficiency Mix	8-29
Table 8.19	Impacts on Industry's Return on Invested Capital in 2011	8-30
Table 8.20	Consumer Payback for Efficiency Upgrades of Split Air Conditioners	
	Under a 10 SEER Standard using Industry Mean Relative Costs and a	
	"Flat" Markup	8-36
Table 8.21	Consumer Payback (years) for Efficiency Upgrades of Split Air	
	Conditioners Under a New Standard Levels using Industry Mean	
	Relative Costs	8-37
Table 8.22	Consumer Payback (years) for Efficiency Upgrades of Split Air	
	Conditioners Under a New Standard Levels using Reverse Engineering	
	Costs	8-37
Table 8.23	Required Decrease in Split Air Conditioner Price Differentials Under New	
	Standard Levels to Reproduce the Consumer Paybacks Realized under the	
	10 SEER Standard Level – Industry Mean Relative Production Costs	8-38
Table 8.24	Required Decrease in Split Air Conditioner Price Differentials Under New	
	Standard Levels to Reproduce the Consumer Paybacks Realized under the	
	10 SEER Standard Level – Reverse Engineering Mean Relative	
	Production Costs	8-39
Table 8.25	Maximum Decrease in Split Air Conditioner (fancoil) Production Cost	
	Differentials Under New Standard Levels using Emerging Technologies	8-40

Table 8.26	Operating Cost Assumptions for the Two Major Manufacturer Subgroups	8-43
Table 8.27	Equipment Price Assumptions for Lower Operating Cost (LOC) and Higher	
	Operating Cost (HOC) Subgroups Under a 10 SEER Standard	8-43
Table 8.28	Profit (EBIT) per Unit Sold (2000)	8-44
Table 8.29	Changes in Net Present Value – Lower Operating Cost Subgroup – NAECA	
	Efficiency Scenario	8-45
Table 8.30	Changes in Net Present Value – Lower Operating Cost Subgroup – Roll-up	
	Efficiency Scenario	8-45
Table 8.31	Changes in Net Present Value – Lower Operating Cost Subgroup – Shift	
	Efficiency Scenario	8-46
Table 8.32	Changes in Net Present Value – Higher Operating Cost Subgroup – NAECA	0 10
14010 0.32	Efficiency Scenario	8-46
Table 8.33	Changes in Net Present Value – Higher Operating Cost Subgroup – Roll-up	0 10
1 4010 0.55	Efficiency Scenario	8-47
Table 8.34	Changes in Net Present Value – Higher Operating Cost Subgroup – Shift	0-47
1 abic 6.54	Efficiency Scenario	Q 17
Table 8.35	Changes in ROIC in 2011 – Lower Operating Cost Subgroup	
Table 8.36		
	Changes in ROIC in 2011 – Higher Operating Cost Subgroup	0-40
Table 8.37	Projected Change in Cumulative Labor Expenditures in the Air Conditioner	0.50
T 11 0 20	Industry 2000 - 2030	8-56
Table 8.38	Summary of Major Regulations on Central Air Conditioner Manufacturers .	8-39
Table 8.39	Market Shares of Major Air Conditioner Manufacturers in Regulated	0.60
T 11 0 10	Products	8-60
Table 8.40	Estimated Investments Required to Meet Impending Federal Regulations	0.64
	(\$ million)	8-61
Table 10.1	1997 RECS Definitions of Low-Income Households at 100% of Poverty	
14010 10.1	Line	10 1
Table 10.2	Comparison of Input Values for All Households and Low-Income	10-1
1 abic 10.2	Households	10-2
Table 10.3	Split A/C: LCC Result Comparisons between Low-Income Households and	10-2
1 abic 10.5	Overall Sample	10.2
Table 10.4	Split Heat Pump: LCC Result Comparisons between Low-Income Household	10-3
1 abic 10.4	1.0 11.0 1	.s 10-3
Table 10.5	1	10-3
Table 10.5	Package A/C: LCC Result Comparisons between Low-Income Households	10.2
Table 10.6	and Overall Sample	10-3
Table 10.6	Package Heat Pump: LCC Result Comparisons between Low-Income	10.4
	Households and Overall Sample	10-4
Table 11.1	AEO2000 Reference Case Forecast	11-5
Table 11.2	Standard Level 1 Forecast	
Table 11.3	Standard Level 2 Forecast	
Table 11.4	Standard Level 3 Forecast	
Table 11.5	Standard Level 4 Forecast	
1 4010 11.5	Diditioned Devel + 1 diceast	11-7

Table 11.6	Standard Level 5 Forecast	1-10
Table 11.7	Standard Level 3 Roll-up Forecast	1-11
Table 11.8	Standard Level 3 Shift Forecast	
Table 11.9	Standard Level 3 Low Economic Forecast	
Table 11.10	Standard Level 3 High Economic Forecast	
Table 12.1	Net National Change in Jobs	
Table B.1	Split Air Conditioners (cased coil) - 3 Ton	B-2
Table B.2	Split Air Conditioners (fancoil) - 3 Ton	
Table B.3	Split Heat Pumps - 3 Ton	
Table B.4	Packaged Air Conditioners - 3 Ton	
Table B.5	Packaged Heat Pumps - 3 Ton	
Table C.1	Predicted versus Listed Equipment Weight	. C-3
Table C.2	Manufacturing Processes Captured in the Bills-of-Material	. C-6
Table D.1	Comparison of NOPR Markups and Supplemental ANOPR Markups	D-2
Table D.2	Total Installed Price Comparison – Split Air Conditioners	
Table D.3	Distributor Markups derived from Census Data	
Table D.4		D-10
Table D.5		D-11
Table D.6		D-12
Table D.I	Disaggregated Costs for ARW Wholesalers/Distributors	
Table D.II		D-16
Table D.III		D-17
Table D.IV	_	D-18
Table E.1	Census Division 1 (New England): Calculation of 30-year Average CDD and HDD	E 10
Table E.2	Census Division 2 (Mid Atlantic minus New York): Calculation of 30-year	L-17
Table E.2	· · · · · · · · · · · · · · · · · · ·	E 20
Table E.3	Average CDD and HDD	E-20
Table E.3	CDD and HDD	E-21
Table E.4	Census Division 4 (West North Central): Calculation of 30-year Average	
Tuoic E. i	CDD and HDD	E-22
Table E.5	Census Division 5 (South Atlantic minus Florida): Calculation of 30-year	
	Average CDD and HDD	E-23
Table E.6	Census Division 6 (East South Central): Calculation of 30-year Average	
	CDD and HDD	E-24
Table E.7	Census Division 7 (West South Central minus Texas): Calculation of 30-year	
	Average CDD and HDD	
Table E.8	Census Division 8 (Mountain): Calculation of 30-year Average	-3
	CDD and HDD	E-26

Table E.9	Census Division 9 (Pacific minus California): Calculation of 30-year Average	
	CDD and HDD	E-27
Table E.10	New York State: Calculation of 30-year Average CDD and HDD	E-28
Table E.11	Forida State: Calculation of 30-year Average CDD and HDD	E -2 9
Table E.12	Texas State: Calculation of 30-year Average CDD and HDD	
Table E.13	California State: Calculation of 30-year Average CDD and HDD	
	•	
Table F.1.1	Split A/C, 11 SEER: Energy Savings	F-2
Table F.1.2	Split A/C, 11 SEER: Costs and Net Present Value	
Table F.2.1	Split A/C, 12 SEER: Energy Savings	
Table F.2.2	Split A/C, 12 SEER: Costs and Net Present Value	F-3
Table F.3.1	Split A/C, 13 SEER: Energy Savings	
Table F.3.2	Split A/C, 13 SEER: Costs and Net Present Value	
Table F.4.1	Split A/C, 18 SEER: Energy Savings	
Table F.4.2	Split A/C, 18 SEER: Costs and Net Present Value	F-5
Table F.5.1	Split HP, 11 SEER: Energy Savings	
Table F.5.2	Split HP, 11 SEER: Costs and Net Present Value	
Table F.6.1	Split HP, 12 SEER: Energy Savings	
Table F.6.2	Split HP, 12 SEER: Costs and Net Present Value	
Table F.7.1	Split HP, 13 SEER: Energy Savings	
Table F.7.2	Split HP, 13 SEER: Costs and Net Present Value	
Table F.8.1	Split HP, 18 SEER: Energy Savings	
Table F.8.2	Split HP, 18 SEER: Costs and Net Present Value	
Table F.9.1	Pack. A/C, 11 SEER: Energy Savings	
Table F.9.2	Pack. A/C, 11 SEER: Costs and Net Present Value	
Table F.10.1	Pack. A/C, 12 SEER: Energy Savings	
Table F.10.2	Pack. A/C, 12 SEER: Costs and Net Present Value	F-11
Table F.11.1	Pack. A/C, 13 SEER: Energy Savings	
Table F.11.2	Pack. A/C, 13 SEER: Costs and Net Present Value	
Table F.12.1	Pack. A/C, 18 SEER: Energy Savings	
Table F.12.2	Pack. A/C, 18 SEER: Costs and Net Present Value	
Table F.13.1	Pack. HP, 11 SEER: Energy Savings	
Table F.13.2	Pack. HP, 11 SEER: Costs and Net Present Value	F-14
Table F.14.1	Pack. HP, 12 SEER: Energy Savings	
Table F.14.2	Pack. HP, 12 SEER: Costs and Net Present Value	
Table F.15.1	Pack. HP, 13 SEER: Energy Savings	F-16
Table F.15.2	Pack. HP, 13 SEER: Costs and Net Present Value	F-16
Table F.16.1	Pack. HP, 18 SEER: Energy Savings	
Table F.16.2	Pack. HP, 18 SEER: Costs and Net Present Value	F-17
Table H.1	Set of Multipliers for Each Standard Level Pattern	H-2
Table 5.3S	Reverse Engineering Standard-Level Manufacturer Cost Multipliers	J-1

Table 5.8S	Weighted-Average Total Installed Costs for Central Air Conditioners and Heat
T-1-1- 5 200	Pumps based on Reverse Engineering Manufacturing Costs J-1
Table 5.28S	Central Air Conditioner and Heat Pump Average Repair Costs based on
T 11 5 250	Reverse Engineering Manufacturing Costs
Table 5.35S	Summary of LCC Results for Split Air Conditioners based on Reverse
T 11 7 2 6 6	Engineering Manufacturing Costs
Table 5.36S	Summary of LCC Results for Split Heat Pumps based on Reverse
	Engineering Manufacturing Costs
Table 5.37S	Summary of LCC Results for Single Package Air Conditioners based on
	Reverse Engineering Manufacturing Costs
Table 5.38S	Summary of LCC Results for Single Package Heat Pumps based on Reverse
	Engineering Manufacturing Costs
Table 5.53S	Summary of Payback Period Results for Split Air Conditioners based on Reverse
	Engineering Manufacturing Costs
Table 5.54S	Summary of Payback Period Results for Split Heat Pumps based on Reverse
	Engineering Manufacturing Costs J-8
Table 5.55S	Summary of Payback Results for Single Package Air Conditioners based on
	Reverse Engineering Manufacturing Costs
Table 5.56S	Summary of Payback Period Results for Single Package Heat Pumps based on
	Reverse Engineering Manufacturing Costs
Table 5.58S	Summary of Rebuttable PBPs and Inputs for Split System
	Air Conditioners based on Reverse Engineering Manufacturing Costs J-11
Table 5.59S	Summary of Rebuttable PBPs and Inputs for Split System
	Heat Pumps based on Reverse Engineering Manufacturing Costs J-11
Table 5.60S	Summary of Rebuttable PBPs and Inputs for Single Package
	Air Conditioners based on Reverse Engineering Manufacturing Costs J-11
Table 5.61S	Summary of Rebuttable PBPs and Inputs for Single Package
	Heat Pumps based on Reverse Engineering Manufacturing Costs J-12
Table 7.11S	Cumulative NES Results based on Reverse Engineering Manufacturing
	Costs and AEO2000 Reference Case (2006-2030)
Table 7.12S	Cumulative NES Results based on Reverse Engineering Manufacturing
	Costs and AEO2000 Low Growth Case (2006-2030)
Table 7.13S	Cumulative NES Results based on Reverse Engineering Manufacturing
	Costs and AEO2000 High Growth Case (2006-2030) J-15
Table 7.14S	Cumulative NPV Results based on Reverse Engineering Manufacturing
7.11.0	Costs and AEO2000 Reference Case (2006-2030)
Table 7.15S	Cumulative NPV Results based on Reverse Engineering Manufacturing
14010 7.100	Costs and AEO2000 Low Growth Case (2006-2030) J-18
Table 7.16S	Cumulative NPV Results based on Reverse Engineering Manufacturing
14010 7.100	Costs and AEO2000 High Growth Case (2006-2030) J-20
Table 7.19S	Cumulative NPV Results based on Reverse Engineering Manufacturing
14010 7.170	Costs, NAECA Efficiency Scenario (2006-2030): 3% Discount Rate
	Scenario J-22
	$DCOMM_{TO}$

Table 7.19A	Cumulative NPV Results based on Reverse Engineering Manufacturing Costs, Roll-up Efficiency Scenario (2006-2030): 3% Discount Rate	
	Scenario	J-24
Table 8.14S	Changes in Industry Net Present Value — Reverse Engineering Cost, NAECA Efficiency Mix	J-26
Table 8.15S	Changes in Industry Net Present Value — Reverse Engineering Cost, Roll-up Efficiency Mix	J-26
Table 8.16S	Changes in Industry Net Present Value — Reverse Engineering Cost, Shift Efficiency Mix	J-27
Table 8.29S	Changes in Net Present Value – Lower Operating Cost Subgroup, Reverse Engineering Relative Cost, NAECA Efficiency Scenario	J-29
Table 8.30S	Changes in Net Present Value – Lower Operating Cost Subgroup, Reverse Engineering Relative Cost, Roll-up Efficiency Scenario	J-29
Table 8.31S	Changes in Net Present Value – Lower Operating Cost Subgroup, Reverse Engineering Relative Cost, Shift Efficiency Scenario	J-30
Table 8.32S	Changes in Net Present Value – Higher Operating Cost Subgroup, Reverse Engineering Relative Cost, NAECA Efficiency Scenario	J-30
Table 8.33S	Changes in Net Present Value – Higher Operating Cost Subgroup, Reverse Engineering Relative Cost, Roll-up Efficiency Scenario	J-31
Table 8.34S	Changes in Net Present Value – Higher Operating Cost Subgroup, Reverse Engineering Relative Cost, Shift Efficiency Scenario	
Table 8.35S	Changes in ROIC in 2011 – Lower Operating Cost Subgroup	
Table 8.36S	Changes in ROIC in 2011 – Lower Operating Cost Subgroup	
Table 10.3S	Split A/C: LCC Result Comparisons between Low-Income Households	. J -52
1 autc 10.55	and Overall Sample based on Reverse Engineering Manufacturing Costs	J-36
Table 10.4S	Split Heat Pump: LCC Result Comparisons between Low-Income	J-30
1 aut 10.43	1 1	
	Households and Overall Sample based on Reverse Engineering	J-36
Table 10.59	Manufacturing Costs	J-30
Table 10.5S	Package A/C: LCC Result Comparisons between Low-Income Households	1 26
Table 10.60	and Overall Sample based on Reverse Engineering Manufacturing Costs	J-36
Table 10.6S	Package Heat Pump: LCC Result Comparisons between Low-Income	
	Households and Overall Sample based on Reverse Engineering	J-37
Table 11 20	Manufacturing Costs	J-3/
Table 11.2S	Standard Level 1 Forecast based on Reverse Engineering Manufacturing	1.20
T-1-1- 11 20	Costs, NAECA Efficiency Scenario	J-38
Table 11.3S	Standard Level 2 Forecast based on Reverse Engineering Manufacturing	1.20
T 11 11 40	Costs, NAECA Efficiency Scenario	J-39
Table 11.4S	Standard Level 3 Forecast based on Reverse Engineering Manufacturing	T 40
T 11 11 50	Costs, NAECA Efficiency Scenario	J-40
Table 11.5S	Standard Level 4 Forecast based on Reverse Engineering Manufacturing	T 41
m 11 11 66	Costs, NAECA Efficiency Scenario	J-41
Table 11.6S	Standard Level 5 Forecast based on Reverse Engineering Manufacturing	.
	Costs, NAECA Efficiency Scenario	J-42

Table 11.7S	Standard Level 4 Roll-up Forecast based on Reverse Engineering	
	Manufacturing Costs	. J-43
Table 11.8S	Standard Level 4 Shift Forecast based on Reverse Engineering	
	Manufacturing Costs	. J-44
Table 11.9S	Standard Level 4 Low Economic Forecast based on Reverse Engineering	
	Manufacturing Costs, NAECA Efficiency Scenario	. J-45
Table 11.10S	Standard Level 4 High Economic Forecast based on Reverse Engineering	
	Manufacturing Costs, NAECA Efficiency Scenario	. J-46
Table 11.7A	Standard Level 4 Roll-up Forecast based on Reverse Engineering	
	Manufacturing Costs	. J-47
Table 11.8A	Standard Level 4 Shift Forecast based on Reverse Engineering	
	Manufacturing Costs	. J-48
Table 11.9A	Standard Level 4 Low Economic Forecast based on ARI Mean	
	Manufacturing Costs, NAECA Efficiency Scenario	. J-49
Table 11.10A	Standard Level 4 High Economic Forecast based on ARI Mean	
	Manufacturing Costs, NAECA Efficiency Scenario	. J-50
Table 12.1S	Net National Change in Jobs	. J-51
Table F.1.1S	Split A/C, 11 SEER: Energy Savings based on Reverse Engineering	
14010 1 .1.15	Manufacturing Costs	. J-70
Table F.1.2S	Split A/C, 11 SEER: Costs and Net Present Value based on Reverse	
14010 1 .1.25	Engineering Manufacturing Costs	. J-70
Table F.2.1S	Split A/C, 12 SEER: Energy Savings based on Reverse Engineering	. 3 70
14010 1 .2.15	Manufacturing Costs	. J-71
Table F.2.2S	Split A/C, 12 SEER: Costs and Net Present Value based on Reverse	. 3 /1
1 4010 1 .2.25	Engineering Manufacturing Costs	. J-71
Table F.3.1S	Split A/C, 13 SEER: Energy Savings based on Reverse Engineering	. 3 /1
14010 1 .5.15	Manufacturing Costs	. J-72
Table F.3.2S	Split A/C, 13 SEER: Costs and Net Present Value based on Reverse	. J-12
1 4010 1 .3.25	Engineering Manufacturing Costs	. J-72
Table F.4.1S	Split A/C, 18 SEER: Energy Savings based on Reverse Engineering	. J-12
14010 1 .4.15	Manufacturing Costs	. J-73
Table F.4.2S	Split A/C, 18 SEER: Costs and Net Present Value based on Reverse	. J-13
1 autc 1 .4.25	Engineering Manufacturing Costs	. J-73
Table F.5.1S	Split HP, 11 SEER: Energy Savings based on Reverse Engineering	. J- /3
1 abic 1.3.15	Manufacturing Costs	. J-74
Table F.5.2S	Split HP, 11 SEER: Costs and Net Present Value based on Reverse	. J-/4
1 aute 1 . 3 . 2 S	Engineering Manufacturing Costs	. J-74
Table F.6.1S	Split HP, 12 SEER: Energy Savings based on Reverse Engineering	. J-/4
1 abic 1.0.15		. J-75
Table F.6.2S	Manufacturing Costs	. J-/3
1 aut F.0.23	Engineering Manufacturing Costs	. J-75
Table F 7 19		. J-/3
Table F.7.1S	Split HP, 13 SEER: Energy Savings based on Reverse Engineering	170
	Manufacturing Costs	. J-/6

Table F.7.2S	Split HP, 13 SEER: Costs and Net Present Value based on Reverse	· - /
T 11 F 0 10	Engineering Manufacturing Costs	J-76
Table F.8.1S	Split HP, 18 SEER: Energy Savings based on Reverse Engineering	1 77
Table E 0 20	Manufacturing Costs	J-77
Table F.8.2S	Split HP, 18 SEER: Costs and Net Present Value based on Reverse	J-77
Table F.9.1S	Engineering Manufacturing Costs	J-//
1 aute 1.9.13	Manufacturing Costs	J-78
Table F.9.2S	Pack. A/C, 11 SEER: Costs and Net Present Value based on Reverse	J -70
14010 1 .7.20	Engineering Manufacturing Costs	J-78
Table F 10 1S	Pack. A/C, 12 SEER: Energy Savings based on Reverse Engineering	70
14010 1 .10.15	Manufacturing Costs	J-79
Table F.10.2S	Pack. A/C, 12 SEER: Costs and Net Present Value based on Reverse	
	Engineering Manufacturing Costs	J-79
Table F.11.1S	Pack. A/C, 13 SEER: Energy Savings based on Reverse Engineering	
	Manufacturing Costs	J-80
Table F.11.2S	Pack. A/C, 13 SEER: Costs and Net Present Value based on Reverse	
	Engineering Manufacturing Costs	J-80
Table F.12.1S	Pack. A/C, 18 SEER: Energy Savings based on Reverse Engineering	
	Manufacturing Costs	J-81
Table F.12.2S	Pack. A/C, 18 SEER: Costs and Net Present Value based on Reverse	
	Engineering Manufacturing Costs	J-81
Table F.13.1S	Pack. HP, 11 SEER: Energy Savings based on Reverse Engineering	
	Manufacturing Costs	J-82
Table F.13.2S	Pack. HP, 11 SEER: Costs and Net Present Value based on Reverse	
	Engineering Manufacturing Costs	J-82
Table F.14.1S	Pack. HP, 12 SEER: Energy Savings based on Reverse Engineering	
T 11 T 11 60	Manufacturing Costs	J-83
Table F.14.2S	Pack. HP, 12 SEER: Costs and Net Present Value based on Reverse	T 03
T 11 F 15 10	Engineering Manufacturing Costs	J-83
Table F.15.18	Pack. HP, 13 SEER: Energy Savings based on Reverse Engineering	1.04
Table E 15 00	Manufacturing Costs	J-84
Table F.13.28	Pack. HP, 13 SEER: Costs and Net Present Value based on Reverse Engineering Manufacturing Costs	J-84
Table E 16 19	Pack. HP, 18 SEER: Energy Savings based on Reverse Engineering	J-64
1able F.10.13	Manufacturing Costs	J-85
Table F 16.2S	Pack. HP, 18 SEER: Costs and Net Present Value based on Reverse	J-0 <i>3</i>
14010 1 .10.25	Engineering Manufacturing Costs	J-85
	Engineering Wandacturing Costs	3 03
Table L.2.1	TTW Products Evaluated	12
Table L.2.2	Key Components of TTW Products	
Table L.2.3	Comparison of Published and Calculated Performance for Baseline Units	
Table L.2.4	Performance Improvement Options Evaluated/Recommended	
Table L.2.5	Total Airflow Test Results	

Table L.2.6	Estimated Performance Improvement Associated with Increased Condenser
T-1-1- I 2.7	Airflow (at no Increase in Power Draw) L-8
Table L.2.7	Estimated System Performance Improvements Associated with Reduced Air Leakage
Table L.2.8	Estimated System Performance Improvements Associated with Dual Blowers L-9
Table L.2.9	Estimated System Performance Improvements Associated with Optimized
	Condenser Airflow L-9
Table L.2.10	SAC 1.5 Ton – Condenser Airflow Distribution L-10
Table L.2.11	SAC 2.5 Ton – Condenser Airflow Distribution L-10
Table L.2.12	PAC – Condenser Airflow Distribution L-11
Table L.2.13	Estimated System Performance Improvements Associated with
	Higher-Efficiency Compressors L-12
Table L.2.14	PAC – Evaporator Airflow Distribution L-13
Table L.2.15	Comparison of Baseline Estimated Manufactured Cost and Derivation of
	Retail Price Estimate L-15
Table L.2.16	Estimated Manufactured-Cost Adders L-16
Table L.2.17	SAC 1.5 Ton – Estimated Performance Improvement and Associated
	Manufactured-Cost Adder L-17
Table L.2.18	SAC 2.5 Ton – Estimated Performance Improvement and Associated
	Manufactured-Cost Adder L-17
Table L.2.19	PAC – Estimated Performance Improvement and Associated
	Manufactured-Cost Adder L-18
Table L.3.1	SAC 1.5 Ton TTW Unit: Baseline and Standard-Level Manufacturing Costs,
	Consumer Equipment Prices, and Total Installed Costs
Table L.3.2	SAC 2.5 Ton TTW Unit: Baseline and Standard-Level Manufacturing Costs,
	Consumer Equipment Prices, and Total Installed Costs
Table L.3.3	PAC TTW Unit: Baseline and Standard-Level Manufacturing Costs, Consumer
	Equipment Prices, and Total Installed Costs L-19
Table L.3.4	SAC 1.5 Ton TTW Unit: Compressor Replacement Costs L-20
Table L.3.5	SAC 2.5 Ton TTW Unit: Compressor Replacement Costs L-20
Table L.3.6	PAC TTW Unit: Compressor Replacement Costs L-20
Table L.3.7	Comparison of Input Values for All Households and Multi-Family
	Households L-21
Table L.3.8	Baseline LCC for TTW Units: Mean, Median, Min, and Max Values L-22
Table L.3.9	Summary of LCC Results for SAC 1.5 Ton L-23
Table L.3.10	Summary of LCC Results for SAC 2.5 Ton L-23
Table L.3.11	Summary of LCC Results for PAC L-23
Table L.3.12	TTW Unit Baseline Life-Cycle Costs and Threshold for Significant Impacts L-24
Table L.3.13	LCC Results for SAC 1.5 Ton TTW Units L-25
Table L.3.14	LCC Results for SAC 2.5 Ton TTW Units L-26
Table L.3.15	LCC Results for PAC TTW Units L-27
m 11 251	
Table M.1	Peak-to-Average Load Ratios by Sector and Region: Current (NEMS 2000)
	Load Shapes versus New (Alternative) Load Shapes M-6

Table M.2	NEMS-BRS Results with Alternative Load Shapes	M-8
Table M.3	Standard Level 1 Forecast, NAECA Efficiency Scenario	M-9
Table M.4	Standard Level 2 Forecast, NAECA Efficiency Scenario	. M-10
Table M.5	Standard Level 3 Forecast, NAECA Efficiency Scenario	. M-11
Table M.6	Standard Level 4 Forecast, Roll-up Efficiency Scenario	. M-12
Table M.7	Standard Level 5 Forecast, Roll-up Efficiency Scenario	. M-13
Table M.8	Power Sector Emissions for all Standards	. M-15
Table M.9	Cumulative Emission Reductions through 2020: Power Sector	. M-15
Table M.10	Cumulative Emission Reductions through 2030: Power Sector	. M-15
Table RIA.1	Regulatory Alternative Results	RIA-6

LIST OF FIGURES

Figure 2.1	Central Air Conditioner and Heat Pump Rulemaking Framework	. 2-2
Figure 2.2	Flow diagram of the manufacturer impact analysis methodology	
Figure 4.1	Phases of the Engineering Analysis	4-2
Figure 4.2	Relationship of Production Cost Estimates in New Reverse Engineering	2
115010 1.2	Approach	4-11
Figure 4.3	Historical Compressor EER Improvements	
Figure 4.4	Distribution of Split Air Conditioner Models by Capacity and Efficiency	
Figure 4.5	Relationship Between HSPF and SEER in Available 3-ton	7 70
Tiguic 4.5	Split Heat Pumps	4-51
Figure 4.6	Effects of Compressor and Fan Modulation on the EER-SEER	7 31
1 iguic 4.0	Relationship in Existing 3-ton Split Air Conditioning Systems	4-56
	Relationship in Daisting 5 ton opin 7th Conditioning Systems	7 30
Figure 5.1	Flow Diagram of LCC, PBP, and Rebuttable PBP Inputs	. 5-5
Figure 5.2	Distribution of Manufacturer Markups	
Figure 5.3	Sales Tax Distribution for the Replacement/Retrofit Market	
Figure 5.4	Probability Distribution of Split A/C Installation Cost	
Figure 5.5	Flow Diagram for the Determination of the Standard-Level Annual	
C	Space-Cooling Energy Cost for Households	5-22
Figure 5.6	Flow Diagram for the Determination of the Standard-Level Annual	
C	Space-Heating Energy Cost for Households	5-22
Figure 5.7	Flow Diagram for the Determination of the Standard-Level Annual	
C	Space-Cooling Energy Cost for Commercial Buildings	5-23
Figure 5.8	Flow Diagram for the Determination of the Standard-Level Annual	
C	Space-Heating Energy Cost for Commercial Buildings	5-23
Figure 5.9	Percent of Households with Central Air Conditioners by Weather-Adjusted	
C	Annual Space-Cooling Energy Consumption	5-29
Figure 5.10	Percent of Households with Heat Pumps by Weather-Adjusted	
C	Annual Space-Cooling Energy Consumption	5-30
Figure 5.11	Distribution of Age Indices for RECS Households with a Central A/C	
Figure 5.12	Distribution of Age Indices for RECS Households with a Heat Pump	
Figure 5.13	Percent of Commercial Buildings by Baseline Annual Space-Cooling Energy	
C	Consumption	
Figure 5.14	Percent of Households with Heat Pumps by Weather-Adjusted Annual Space	-
	Heating Energy Consumption	
Figure 5.15	Distribution of Age Indices for RECS Households with a Heat Pump	
Figure 5.16	Percent of Commercial Buildings by Baseline Annual Space-Heating Energy	
Č	Consumption	
Figure 5.17	Percent of Households with Central Air Conditioners by Average	
_	Electricity Prices	5-55
Figure 5.18	Percent of Households with Heat Pumps by Average Electricity Prices	5-55

Figure 5.19	Percent of Commercial Buildings with Space-Conditioning Equipment by	
	Average Electricity Prices	. 5-58
Figure 5.20	Percent of Households with Central Air Conditioners by Marginal	
	Electricity Prices	. 5-63
Figure 5.21	Percent of Households with Heat Pumps by Marginal Electricity Prices	. 5-64
Figure 5.22	Percent of Commercial Buildings with Space-Cooling Equipment by	
	Marginal Electricity Prices	. 5-65
Figure 5.23	Electricity Price Trends	. 5-66
Figure 5.24	Distribution of Annual Maintenance Costs	. 5-68
Figure 5.25	Retirement Function for Central Air Conditioners and Heat Pumps	. 5-70
Figure 5.26	Distribution of New Home Mortgage Nominal Interest Rates	. 5-73
Figure 5.27	Distribution of Second Mortgage Nominal Interest Rates	. 5-73
Figure 5.28	Distribution of Credit Card Nominal Interest Rates	. 5-74
Figure 5.29	Split A/C: Mean Installed Consumer Costs	. 5-78
Figure 5.30	Split A/C: Mean Annual Operating Costs	. 5-78
Figure 5.31	Split A/C: Mean Life-Cycle Costs	
Figure 5.32	Split HP: Mean Installed Consumer Costs	
Figure 5.33	Split HP: Mean Annual Operating Costs	
Figure 5.34	Split HP: Mean Life-Cycle Costs	
Figure 5.35	Pack A/C: Mean Installed Consumer Costs	
Figure 5.36	Pack A/C: Mean Annual Operating Costs	. 5-79
Figure 5.37	Pack A/C: Mean Life-Cycle Costs	
Figure 5.38	Pack HP: Mean Installed Consumer Costs	. 5-79
Figure 5.39	Pack HP: Mean Annual Operating Costs	. 5-79
Figure 5.40	Pack HP: Mean Life-Cycle Costs	. 5-79
Figure 5.41	Split A/C: Percent of Buildings by Life-Cycle Cost, Baseline	. 5-81
Figure 5.42	Split HP: Percent of Buildings by Life-Cycle Cost, Baseline	. 5-82
Figure 5.43	Package A/C: Percent of Buildings by Life-Cycle Cost, Baseline	. 5-82
Figure 5.44	Package HP: Percent of Buildings by Life-Cycle Cost, Baseline	. 5-83
Figure 5.45	Frequency Chart of LCC Differences for 11 SEER Efficiency Level	. 5-84
Figure 5.46	Cumulative Chart of LCC Differences for 11 SEER Efficiency Level	. 5-85
Figure 5.47	Average LCCs for Split System Central Air Conditioners	. 5-89
Figure 5.48	Percent of Split System Central A/C Consumers with Net Costs, No	
	Significant Impacts, and Net Savings	. 5-89
Figure 5.49	Average LCCs for Split System Heat Pumps	. 5-90
Figure 5.50	Percent of Split System Heat Pump Consumers with Net Costs, No	
	Significant Impacts, and Net Savings	. 5-90
Figure 5.51	Average LCCs for Single Package Central Air Conditioners	. 5-91
Figure 5.52	Percent of Single Package Central A/C Consumers with Net Costs, No	
	Significant Impacts, and Net Savings	. 5-91
Figure 5.53	Average LCCs for Single Package Heat Pumps	. 5-92
Figure 5.54	Percent of Single Package Heat Pump Consumers with Net Costs, No	
	Significant Impacts, and Net Savings	. 5-92

Figure 5.55	Average LCCs for Split A/C – LCC Scenario with Rev Eng Manufacturer Costs	5-94
Figure 5.56	Percent of Split A/C Consumers with Net Costs, No Significant Impacts, and Net Savings – LCC Scenario with Rev Eng Manufacturer Costs	5-94
Figure 5.57	Average LCCs for Split HP – LCC Scenario with Rev Eng Manufacturer Costs	5-95
Figure 5.58	Percent of Split HP Consumers with Net Costs, No Significant Impacts, and Net Savings – LCC Scenario with Rev Eng Manufacturer Costs	5-95
Figure 5.59	Average LCCs for Single Package A/C – LCC Scenario with Rev Eng Manufacturer Costs	5-96
Figure 5.60	Percent of Single Package A/C Consumers with Net Costs, No Significant Impacts, and Net Savings – LCC Scenario with Rev Eng Manufacturer	. 5 70
Figure 5.61	Costs	5-96
8	Manufacturer Costs	5-97
Figure 5.62	Percent of Single Package HP Consumers with Net Costs, No Significant Impacts, and Net Savings – LCC Scenario with Rev Eng Manufacturer	
	Costs	5-97
Figure 5.63	Average LCCs for Split A/C – LCC Scenario with 14 year average Lifetime	5-99
Figure 5.64	Percent of Split A/C Consumers with Net Costs, No Significant Impacts, and Net Savings – LCC Scenario with 14 year average Lifetime	5-99
Figure 5.65	, ,	5-100
Figure 5.66	Percent of Split HP Consumers with Net Costs, No Significant Impacts,	5-100
Figure 5.67	Average LCCs for Single Package A/C – LCC Scenario with 14 year	
Figure 5.68	average Lifetime Percent of Single Package A/C Consumers with Net Costs, No Significant	5-101
riguic 5.00		5-101
Figure 5.69	Average LCCs for Single Package HP –LCC Scenario with 14 year	5 101
118410 5.05		5-102
Figure 5.70	Percent of Single Package HP Consumers with Net Costs, No Significant	
C	Impacts, and Net Savings –LCC Scenario with 14 year average Lifetime	5-102
Figure 5.71	Frequency Chart of Payback Periods for 11 SEER Efficiency Level for	
	Split Air Conditioners	5-104
Figure 5.72	Split A/C: Median and Mean Payback Periods	5-105
Figure 5.73	Split HP: Median and Mean Payback Periods	
Figure 5.74	Package A/C: Median and Mean Payback Periods	
Figure 5.75	Package HP: Median and Mean Payback Periods	5-108
Figure 6.1	Flow Diagram for CAC/HP Shipments Model	
Figure 6.2	Decision Tree for New Housing Purchases	. 6-8
Figure 6.3	Market Share of Heat Pumps relative to Total Central Air Conditioner and Heat Pump Sales	6-10

Figure 6.4	Decision Tree for Replacement and Repair of Regular CAC-HP Units
	in Existing Housing 6-11
Figure 6.5	Probability Function that an Existing CAC-HP has a Problem 6-13
Figure 6.6	Survival Probability Function for CAC-HP Units 6-14
Figure 6.7	Relative Probability of Regular Replacement, Repair, Early Replacement
	and No Action as a Function of CAC-HP Age for 1987 6-15
Figure 6.8	Decision Tree for Remodeled Housing
Figure 6.9	Decision Tree for Housing With Extended Life Units
Figure 6.10	Survival Probability Function for Extended Life Units 6-19
Figure 6.11	Central AC System Saturations in New Single Family Housing and
	Housing Stock: Comparison of Data and Logit Function Fits 6-25
Figure 6.12	Combined Central Air Conditioner and Heat Pump Shipments Forecast
	based on NAECA Efficiency Scenario and AEO2000 Reference Case 6-32
Figure 6.13	Combined Central Air Conditioner and Heat Pump Shipments Forecast
C	based on Roll-up Efficiency Scenario and AEO2000 Reference Case 6-32
Figure 6.14	Combined Central Air Conditioner and Heat Pump Shipments Forecast
C	based on Shift Efficiency Scenario and AEO2000 Reference Case 6-33
Figure 6.15	Sensitivity of Base Case Shipments, NAECA Efficiency Scenario to
C	AEO 2000 Forecasts
Figure 6.16	Impacts of Increased Efficiency for the Year 2006 and Average Impacts
C	Over the Period 2006 to 2030 for Split A/C Sales and Shipments 6-37
Figure 6.17	Impacts of Increased Efficiency for the Year 2006 and Average Impacts
C	Over the Period 2006 to 2030 for Split Heat Pump Sales and Shipments 6-38
Figure 6.18	Impacts of Increased Efficiency for the Year 2006 and Average Impacts
\mathcal{E}	Over the Period 2006 to 2030 for Package A/C Sales and Shipments 6-38
Figure 6.19	Impacts of Increased Efficiency for the Year 2006 and Average Impacts
\mathcal{E}	Over the Period 2006 to 2030 for Package Heat Pump Sales and Shipments . 6-39
Figure 6.20	Average Relative Impacts on Mean Age, Mean Lifetime, Early Replacements,
\mathcal{E}	and Total Repairs Over the Period 2006 to 2030 for Split A/C 6-40
Figure 6.21	Average Relative Impacts on Mean Age, Mean Lifetime, Early Replacements,
\mathcal{E}	and Total Repairs Over the Period 2006 to 2030 for Split Heat Pumps 6-41
Figure 6.22	Average Relative Impacts on Mean Age, Mean Lifetime, Early Replacements,
8	and Total Repairs Over the Period 2006 to 2030 for Package A/C 6-41
Figure 6.23	Average Relative Impacts on Mean Age, Mean Lifetime, Early Replacements,
8	and Total Repairs Over the Period 2006 to 2030 for Package Heat Pumps 6-42
	man a com a september of the man a construction and a construction and a construction and a construction and a
Figure 7.1	Retirement Function for Central Air Conditioners and Heat Pumps 7-7
Figure 7.2	Cumulative NES Results based on AEO2000 Reference Case (2006 - 2030) 7-23
Figure 7.3	Cumulative NES Results based on AEO2000 Low Growth
1 180110 7 15	Case (2006 - 2030)
Figure 7.4	Cumulative NES Results based on AEO2000 High Growth
-0	Case (2006 - 2030)
Figure 7.5	National Annual Costs and Savings for TSL 1, NAECA Efficiency Scenario,
<i>G</i>	AEO2000 Reference Case

Figure 7.6	National Annual Costs and Savings for TSL 2, NAECA Efficiency Scenario, AEO2000 Reference Case	7-26
Figure 7.7	National Annual Costs and Savings for TSL 3, NAECA Efficiency Scenario,	
8	AEO2000 Reference Case	7-27
Figure 7.8	National Annual Costs and Savings for TSL 4, NAECA Efficiency Scenario,	
_	AEO2000 Reference Case	7-27
Figure 7.9	National Annual Costs and Savings for TSL 5, NAECA Efficiency Scenario,	
	AEO2000 Reference Case	7-28
Figure 7.10	Cumulative Total Equipment and Operating Costs based on AEO2000	
	Reference Case (2006 - 2030)	7-29
Figure 7.11	Cumulative NPVs relative to $\pm 2\%$ of Total National Base Case Costs	
	based on AEO2000 Reference Case (2006 - 2030)	7-30
Figure 7.12	Cumulative Total Equipment and Operating Costs based on AEO2000	
	Low Growth Case (2006 - 2030)	7-31
Figure 7.13	Cumulative NPVs relative to $\pm 2\%$ of Total National Base Case Costs	
	based on AEO2000 Low Growth Case (2006 - 2030)	7-31
Figure 7.14	Cumulative Total Equipment and Operating Costs based on AEO2000	
	High Growth Case (2006 - 2030)	7-32
Figure 7.15	Cumulative NPVs relative to $\pm 2\%$ of Total National Base Case Costs	
	based on AEO2000 High Growth Case (2006 - 2030)	7-33
Figure 7.16	Split A/C: Comparison of Manufacturer Cost Multipliers	
Figure 7.17	Split HP: Comparison of Manufacturer Cost Multipliers	
Figure 7.18	Pack. A/C: Comparison of Manufacturer Cost Multipliers	7-35
Figure 7.19	Pack. HP: Comparison of Manufacturer Cost Multipliers	7-35
Figure 7.20	Cumulative Total National Operating and Equipment Costs based	
	on Reverse Manufacturer Cost Scenario (2006 - 2030)	7-36
Figure 7.21	Cumulative National NPVs based on Reverse Manufacturer	
	Cost Scenario (2006 - 2030)	7-37
Figure 7.22	Cumulative NES Results based on Reverse Engineering Manufacturer	
	Cost Scenario (2006 - 2030)	7-38
Figure 7.23	Cumulative Total National Operating and Equipment Costs based	
	on 14-year Average Lifetime Scenario (2006 - 2030)	7-39
Figure 7.24	Cumulative National NPVs based on 14-year Average Lifetime	
	Scenario (2006 - 2030)	7-40
Figure 7.25	Cumulative NES Results based on 14-year Average Lifetime	
	Scenario (2006 - 2030)	7-41
Figure 7.26	Cumulative Total National Operating and Equipment Costs based	
	on 3% Discount Rate Scenario (2006 - 2030)	7-42
Figure 7.27	Cumulative National NPVs based on 3% Discount Rate Scenario	
	(2006 - 2030)	7-43
Figure 7.28	Cumulative NES Results based on 3% Discount Rate Scenario	
	(2006 - 2030)	7-44
Figure 7.29	NES for Split System A/C based on a 12 SEER Efficiency-Level	
Figure 7.30	NPV for Split System A/C based on a 12 SEER Efficiency-Level	7-45

Figure 7.31	Annual Values of a 12 SEER Efficiency-Level for Split A/C	. 7-46
Figure 8.1	Value of All Unitary Shipments (\$ million), 1991-1998	8-6
Figure 8.2	Using the GRIM to Conduct the Cash Flow Analysis	. 8-11
Figure 8.3	Industry Net Cash Flow – Shift Efficiency Scenario	. 8-31
Figure 8.4	Industry Net Cash Flow – NAECA Efficiency Scenario	. 8-31
Figure 8.5	Industry Net Cash Flow – Roll-up Efficiency Scenario	. 8-32
Figure 8.6	Contribution of Products at Each Efficiency Level to Industry Profits	
	(EBIT) under Trial Standards – NAECA Efficiency Scenario	. 8-33
Figure 8.7	Contribution of Products at Each Efficiency Level to Industry Profits	0.24
L. 0.0	(EBIT) under Trial Standards – Roll-up Efficiency Scenario	. 8-34
Figure 8.8	Contribution of Products at Each Efficiency Level to Industry Profits	0.24
E. 0.0	(EBIT) under Trial Standards – Shift Efficiency Scenario	. 8-34
Figure 8.9	Net Cash Flows for the Lower Operating Cost Subgroup – NAECA	0.50
E: 0.10	Efficiency Scenario	. 8-50
Figure 8.10	Net Cash Flows for the Lower Operating Cost Subgroup – Roll-up	0.50
E: 0.11	Efficiency Scenario	. 8-50
Figure 8.11	Net Cash Flows for the Lower Operating Cost Subgroup – Shift	0.51
F: 0.12	Efficiency Scenario	. 8-51
Figure 8.12	Net Cash Flows for the Higher Operating Cost Subgroup – NAECA	0.50
F: 0.12	Efficiency Scenario	. 8-52
Figure 8.13	Net Cash Flows for the Higher Operating Cost Subgroup – Roll-up	0.50
T: 0.14	Efficiency Scenario	. 8-52
Figure 8.14	Net Cash Flows for the Higher Operating Cost Subgroup – Shift	0.50
	Efficiency Scenario	. 8-53
Figure 10.1	Split A/C: Comparison of Median and Mean Payback Periods between	
	Low-Income Households and the Overall Sample	. 10-5
Figure 10.2	Split HP: Comparison of Median and Mean Payback Periods between	
_	Low-Income Households and the Overall Sample	. 10-5
Figure 10.3	Package A/C: Comparison of Median and Mean Payback Periods between	
C	Low-Income Households and the Overall Sample	. 10-5
Figure 10.4	Package HP: Comparison of Median and Mean Payback Periods between	
C	Low-Income Households and the Overall Sample	. 10-5
Figure 12.1	Net National Employment Impacts	12_1
Figure 12.1	Employment Impacts of Consumer Savings	
Figure 12.3	Employment Impacts of Changes in Equipment Cost	
Figure 12.4	Employment Impacts of Utility Savings	
1 1guic 12.4	Employment impacts of Othity Savings	. 12-0
Figure A.1a	Normal Probability Distribution	. A-3
Figure A.1b	Triangular Probability Distribution	. A-3
Figure A.1c	Uniform Probability Distribution	

Figure B.1	Characteristics of Split Air Conditioner Samples - Compressor Type	B-7
Figure B.2	Characteristics of Split Air Conditioner Samples - TXV	
Figure B.3	Characteristics of Split Air Conditioner Samples - Refrigerant Management	. B-8
Figure B.4	Characteristics of Split Air Conditioner Samples - Tube Rifling	B-8
Figure B.5	Characteristics of Split Air Conditioner Samples - Indoor Fan Control	B - 9
Figure B.6	Characteristics of Split Air Conditioner Samples - Fans	
Figure B.7	Characteristics of Split Air Conditioner Samples - Capacity and Charge	. B-10
Figure B.8	Characteristics of Split Air Conditioner Samples - Weight	. B-10
Figure B.9	Characteristics of Split Air Conditioner Samples - Cabinet Volume	. B-11
Figure B.10	Characteristics of Split Air Conditioner Samples - Fin Density	. B-11
Figure B.11	Characteristics of Split Air Conditioner Samples - Tube Rows and	
	Face Area	
Figure B.12	Characteristics of Split Heat Pump Samples - Compressor Type	. B-12
Figure B.13	Characteristics of Split Heat Pump Samples - TXV	. B-13
Figure B.14	Characteristics of Split Heat Pump Samples - Refrigerant Management	. B-13
Figure B.15	Characteristics of Split Heat Pump Samples - Tube Rifling	. B-14
Figure B.16	Characteristics of Split Heat Pump Samples - Fan Control	. B-14
Figure B.17	Characteristics of Split Heat Pump Samples - Fans	. B-15
Figure B.18	Characteristics of Split Heat Pump Samples - Capacity and Charge	. B-15
Figure B.19	Characteristics of Split Heat Pump Samples - Weight	. B-16
Figure B.20	Characteristics of Split Heat Pump Samples - Cabinet Volume	. B-16
Figure B.21	Characteristics of Split Heat Pump Samples - Fin Density	. B-17
Figure B.22	Characteristics of Split Heat Pump Samples - Tube Rows and Face Area	. B-17
Figure B.23	Characteristics of Package Air Conditioner Samples - Compressor Type	. B-18
Figure B.24	Characteristics of Package Air Conditioner Samples - TXV	. B-18
Figure B.25	Characteristics of Package Air Conditioner Samples -	
	Refrigerant Management	
Figure B.26	Characteristics of Package Air Conditioner Samples - Tube Rifling	. B-19
Figure B.27	Characteristics of Package Air Conditioner Samples - Fan Control	. B-20
Figure B.28	Characteristics of Package Air Conditioner Samples - Fans	. B-20
Figure B.29	Characteristics of Package Air Conditioner Samples - Capacity and Charge	
Figure B.30	Characteristics of Package Air Conditioner Samples - Weight	
Figure B.31	Characteristics of Package Air Conditioner Samples - Volume	. B-22
Figure B.32	Characteristics of Package Air Conditioner Samples - Fin Density	
Figure B.33	Characteristics of Package Air Conditioner Samples - Coils	. B-23
Figure B.34	Characteristics of Package Heat Pump Samples - Compressor Type	. B-23
Figure B.35	Characteristics of Package Heat Pump Samples - TXV	
Figure B.36	Characteristics of Package Heat Pump Samples - Refrigerant Management	. B-24
Figure B.37	Characteristics of Package Heat Pump Samples - Tube Rifling	. B-25
Figure B.38	Characteristics of Package Heat Pump Samples - Fan Control	
Figure B.39	Characteristics of Package Heat Pump Samples - Fans	. B-26
Figure B.40	Characteristics of Package Heat Pump Samples - Capacity and Charge	
Figure B.41	Characteristics of Package Heat Pump Samples - Weight	
Figure B.42	Characteristics of Package Heat Pump Samples - Volume	. B-27

Figure B.43	Characteristics of Package Heat Pump Samples - Fin Density	B-28
Figure B.44	Characteristics of Package Heat Pump Samples - Coils	
Figure C.1	Sample structured bill of materials	C-5
Figure C.2	Sample Fabrication and Assembly Summary Table	
Figure C.3	Overall Model Structure	
Figure C.4	Sample of Global Controls Sheet	
Figure C.5	Sample table showing major sub-assembly and plant overhead costs	
Figure C.6	Sample Data Fields from Manufacturing Data Sheet	
Figure C.7	Sample Raw Material Data Tables and Part Price List from the	0 11
rigare C.7	Purchased Parts Sheet	C-13
Figure C.8	Sample from Equipment Data Sheet	
Figure C.9	Flow Diagram for Coil Model	
Figure C.10	Coil model output fields	
Figure C.11	Coil manufacturing costs calculated in the coil model	
Tiguic C.TT	Con manufacturing costs carculated in the con model	С 10
Figure D.1	Base and Incremental Costs and Markups for Split System Air Condition	
	at the Wholesaler Level	
Figure D.2	Comparison of Wholesaler/Distributor Markups	
Figure D.3	Comparison of Dealer/Contractor Markups	D-14
Figure E.1	Split A/C, 11 SEER: Frequency Chart of LCC Difference	E-2
Figure E.2	Split A/C, 11 SEER: Cumulative Chart of LCC Difference	
Figure E.3	Split A/C, 12 SEER: Frequency Chart of LCC Difference	
Figure E.4	Split A/C, 12 SEER: Cumulative Chart of LCC Difference	
Figure E.5	Split A/C, 13 SEER: Frequency Chart of LCC Difference	
Figure E.6	Split A/C, 13 SEER: Cumulative Chart of LCC Difference	
Figure E.7	Split A/C, 18 SEER: Frequency Chart of LCC Difference	
Figure E.8	Split A/C, 18 SEER: Cumulative Chart of LCC Difference	
Figure E.9	Split Heat Pump, 11 SEER: Frequency Chart of LCC Difference	
Figure E.10	Split Heat Pump, 11 SEER: Cumulative Chart of LCC Difference	
Figure E.11	Split Heat Pump, 12 SEER: Frequency Chart of LCC Difference	
Figure E.12	Split Heat Pump, 12 SEER: Cumulative Chart of LCC Difference	
Figure E.13	Split Heat Pump, 13 SEER: Frequency Chart of LCC Difference	
Figure E.14	Split Heat Pump, 13 SEER: Cumulative Chart of LCC Difference	
Figure E.15	Split Heat Pump, 18 SEER: Frequency Chart of LCC Difference	
Figure E.16	Split Heat Pump, 18 SEER: Cumulative Chart of LCC Difference	
Figure E.17	Single Package A/C, 11 SEER: Frequency Chart of LCC Difference	
Figure E.18	Single Package A/C, 11 SEER: Cumulative Chart of LCC Difference	
Figure E.19	Single Package A/C, 12 SEER: Frequency Chart of LCC Difference	
Figure E.20	Single Package A/C, 12 SEER: Cumulative Chart of LCC Difference	
Figure E.21	Single Package A/C, 13 SEER: Frequency Chart of LCC Difference	
Figure E.22		
Figure E.23	Single Package A/C, 18 SEER: Frequency Chart of LCC Difference	
Figure E.22	Single Package A/C, 13 SEER: Cumulative Chart of LCC Difference	E-12

Figure E.24	Single Package A/C, 18 SEER: Cumulative Chart of LCC Difference	E-13
Figure E.25	Single Package Heat Pump, 11 SEER: Frequency Chart of LCC Difference.	E-14
Figure E.26	Single Package Heat Pump, 11 SEER: Cumulative Chart of LCC Difference	
Figure E.27	Single Package Heat Pump, 12 SEER: Frequency Chart of LCC Difference.	E-15
Figure E.28	Single Package Heat Pump, 12 SEER: Cumulative Chart of LCC Difference	E-15
Figure E.29	Single Package Heat Pump, 13 SEER: Frequency Chart of LCC Difference.	E-16
Figure E.30	Single Package Heat Pump, 13 SEER: Cumulative Chart of LCC Difference	
Figure E.31	Single Package Heat Pump, 18 SEER: Frequency Chart of LCC Difference.	
Figure E.32	Single Package Heat Pump, 18 SEER: Cumulative Chart of LCC Difference	E-17
Figure F.1	Split A/C, 11 SEER: Annual Savings and Costs	. F-2
Figure F.2	Split A/C, 12 SEER: Annual Savings and Costs	. F-3
Figure F.3	Split A/C, 13 SEER: Annual Savings and Costs	. F-4
Figure F.4	Split A/C, 18 SEER: Annual Savings and Costs	. F-5
Figure F.5	Split HP, 11 SEER: Annual Savings and Costs	
Figure F.6	Split HP, 12 SEER: Annual Savings and Costs	. F-7
Figure F.7	Split HP, 13 SEER: Annual Savings and Costs	. F-8
Figure F.8	Split HP, 18 SEER: Annual Savings and Costs	. F - 9
Figure F.9	Package A/C, 11 SEER: Annual Savings and Costs	F-10
Figure F.10	Package A/C, 12 SEER: Annual Savings and Costs	
Figure F.11	Package A/C, 13 SEER: Annual Savings and Costs	F-12
Figure F.12	Package A/C, 18 SEER: Annual Savings and Costs	
Figure F.13	Package HP, 11 SEER: Annual Savings and Costs	F-14
Figure F.14	Package HP, 12 SEER: Annual Savings and Costs	F-15
Figure F.15	Package HP, 13 SEER: Annual Savings and Costs	
Figure F.16	Package HP, 18 SEER: Annual Savings and Costs	
Figure H.1a	An Example of the Interpolation of a Trial Standard Level: Difference	
	in Coal Capacity	H-4
Figure H.1b	Close-Up of the Interpolation of Trial Standard Level X2 from X1	H-5
Figure H.2	Example of Trial Standard Level X1: Marginal NO _x Emissions	H-6
Figure 5.29S		
F: 5.20G	Costs	. J-3
Figure 5.30S	Split A/C: Mean Annual Operating Costs based on Rev Eng Manufacturing Costs	. J-3
Figure 5.31S	Split A/C: Mean Life-Cycle Costs based on Rev Eng Manufacturing	
	Costs	. J-3
Figure 5.32S	Split HP: Mean Installed Consumer Costs based on Rev Eng Manufacturing Costs	. J-3
Figure 5.33S		
1 15010 0.000	Costs	. J-3
Figure 5.34S		
_	Costs	. J-3

Figure 5.35S	Pack A/C: Mean Installed Consumer Costs based on Rev Eng Manufacturing Costs
Figure 5.36S	Pack A/C: Mean Annual Operating Costs based on Rev Eng Manufacturing Costs
Figure 5.37S	Pack A/C: Mean Life-Cycle Costs based on Rev Eng Manufacturing Costs
Figure 5.38S	Pack HP: Mean Installed Consumer Costs based on Rev Eng Manufacturing Costs
Figure 5.39S	Pack HP: Mean Annual Operating Costs based on Rev Eng Manufacturing Costs
Figure 5.40S	Pack HP: Mean Life-Cycle Costs based on Rev Eng Manufacturing Costs
Figure 5.72S	Split A/C: Median and Mean Payback Periods based on Reverse Engineering Manufacturing Costs
Figure 5.73S	Split HP: Median and Mean Payback Periods based on Reverse Engineering Manufacturing Costs
Figure 5.74S	Package A/C: Median and Mean Payback Periods based on Reverse Engineering Manufacturing Costs
Figure 5.75S	Package HP: Median and Mean Payback Periods based on Reverse Engineering Manufacturing Costs
Figure 7.2S	Cumulative NES Results based on Reverse Engineering Manufacturing Costs and AEO2000 Reference Case (2006 - 2030)
Figure 7.3S	Cumulative NES Results based on Based on Reverse Engineering Manufacturing Costs and AEO2000 Low Growth Case (2006 - 2030) J-14
Figure 7.4S	Cumulative NES Results based on Beverse Engineering Manufacturing Costs and AEO2000 High Growth Case (2006 - 2030) J-15
Figure 7.10S	Cumulative Total Equipment and Operating Costs based on Reverse Engineering Manufacturing Costs and AEO2000 Reference Case (2006 - 2030)
Figure 7.11S	Cumulative NPVs relative to ±2% of Total National Base Case Costs based on Reverse Engineering Manufacturing Costs and AEO2000 Reference
Figure 7.12S	Case (2006 - 2030)
Figure 7.13S	(2006 - 2030)
Figure 7.14S	Cumulative Total Equipment and Operating Costs based on Reverse Engineering Manufacturing Costs and AEO2000 High Growth Case (2006 - 2030)
Figure 7.15S	Cumulative NPVs relative to ±2% of Total National Base Case Costs based on Reverse Engineering Manufacturing Costs and AEO2000 High Growth Case (2006 - 2030) J-21

Figure 7.26S	Cumulative Total National Operating and Equipment Costs based on	
	Reverse Engineering Manufacturing Costs, NAECA Efficiency Scenario,	
	and 3% Discount Rate Scenario (2006 - 2030)	22
Figure 7.27S	Cumulative National NPVs based on Reverse Engineering Manufacturing	
	Costs, NAECA Efficiency Scenario, and 3% Discount Rate Scenario	
	(2006 - 2030)	23
Figure 7.26A	Cumulative Total National Operating and Equipment Costs based on	
	Reverse Engineering Manufacturing Costs, Roll-up Efficiency Scenario,	
	and 3% Discount Rate Scenario (2006 - 2030) J-	24
Figure 7.27A	Cumulative National NPVs based on Reverse Engineering	
	Manufacturing Costs, Roll-up Efficiency Scenario, and 3% Discount Rate	
	Scenario (2006 - 2030)	25
Figure 8.3S	Industry Net Cash Flow – Reverse Engineering, Shift Efficiency Scenario J-	27
Figure 8.4S	Industry Net Cash Flow – Reverse Engineering, NAECA Efficiency Scenario J-	28
Figure 8.5S	Industry Net Cash Flow – Reverse Engineering, Roll-up Efficiency Scenario J-	28
Figure 8.9S	Net Cash Flows for the Lower Operating Subgroup – Reverse Engineering,	
C	NAECA Efficiency Scenario	33
Figure 8.10S	Net Cash Flows for the Lower Operating Subgroup – Reverse Engineering,	
C	Roll-up Efficiency Scenario	33
Figure 8.11S	Net Cash Flows for the Lower Operating Subgroup – Reverse Engineering,	
_		34
Figure 8.12S	Net Cash Flows for the Higher Operating Subgroup – Reverse Engineering,	
_		34
Figure 8.13S	Net Cash Flows for the Higher Operating Subgroup – Reverse Engineering,	
	1	35
Figure 8.14S	Net Cash Flows for the Higher Operating Subgroup – Reverse Engineering,	
		35
Figure 12.1S	Net National Employment Impacts	51
Figure 12.2S	Employment Impacts of Consumer Savings J-	52
Figure 12.3S	Employment Impacts of Changes in Equipment Cost	52
Figure 12.4S	Employment Impacts of Utility Savings J-	53
Figure E.1S	Split A/C, 11 SEER: Frequency Chart of LCC Difference based on	
		54
Figure E.2S	Split A/C, 11 SEER: Cumulative Chart of LCC Difference based on	
	Reverse Engineering Manufacturing Costs	54
Figure E.3S	Split A/C, 12 SEER: Frequency Chart of LCC Difference based on	
		55
Figure E.4S	Split A/C, 12 SEER: Cumulative Chart of LCC Difference based on	
		55
Figure E.5S	Split A/C, 13 SEER: Frequency Chart of LCC Difference based on	
		56
Figure E.6S	Split A/C, 13 SEER: Cumulative Chart of LCC Difference based on	
	Reverse Engineering Manufacturing Costs	56

Split A/C, 18 SEER: Frequency Chart of LCC Difference based on	
Reverse Engineering Manufacturing Costs	J-57
Split A/C, 18 SEER: Cumulative Chart of LCC Difference based on	
Reverse Engineering Manufacturing Costs	J-57
Split Heat Pump, 11 SEER: Frequency Chart of LCC Difference based on	
Reverse Engineering Manufacturing Costs	J-58
Split Heat Pump, 11 SEER: Cumulative Chart of LCC Difference based on	
	J-58
	J-59
	J-59
	J-60
	J-60
	J-61
	J-61
	J-62
	J-62
	J-63
	J-63
	J-64
	J-64
	J-65
	J-65
	J-66
	J-66
	J-67
	- '
based on Reverse Engineering Manufacturing Costs	J-67
	Reverse Engineering Manufacturing Costs Split A/C, 18 SEER: Cumulative Chart of L/CC Difference based on Reverse Engineering Manufacturing Costs Split Heat Pump, 11 SEER: Frequency Chart of L/CC Difference based on Reverse Engineering Manufacturing Costs Split Heat Pump, 11 SEER: Cumulative Chart of L/CC Difference based on Reverse Engineering Manufacturing Costs Split Heat Pump, 12 SEER: Frequency Chart of L/CC Difference based on Reverse Engineering Manufacturing Costs Split Heat Pump, 12 SEER: Cumulative Chart of L/CC Difference based on Reverse Engineering Manufacturing Costs Split Heat Pump, 13 SEER: Frequency Chart of L/CC Difference based on Reverse Engineering Manufacturing Costs Split Heat Pump, 13 SEER: Frequency Chart of L/CC Difference based on Reverse Engineering Manufacturing Costs Split Heat Pump, 18 SEER: Cumulative Chart of L/CC Difference based on Reverse Engineering Manufacturing Costs Split Heat Pump, 18 SEER: Frequency Chart of L/CC Difference based on Reverse Engineering Manufacturing Costs Split Heat Pump, 18 SEER: Cumulative Chart of L/CC Difference based on Reverse Engineering Manufacturing Costs Single Package A/C, 11 SEER: Frequency Chart of L/CC Difference based on Reverse Engineering Manufacturing Costs Single Package A/C, 12 SEER: Cumulative Chart of L/CC Difference based on Reverse Engineering Manufacturing Costs Single Package A/C, 12 SEER: Cumulative Chart of L/CC Difference based on Reverse Engineering Manufacturing Costs Single Package A/C, 13 SEER: Cumulative Chart of L/CC Difference based on Reverse Engineering Manufacturing Costs Single Package A/C, 13 SEER: Cumulative Chart of L/CC Difference based on Reverse Engineering Manufacturing Costs Single Package A/C, 18 SEER: Cumulative Chart of L/CC Difference based on Reverse Engineering Manufacturing Costs Single Package A/C, 18 SEER: Cumulative Chart of L/CC Difference based on Reverse Engineering Manufacturing Costs Single Package H/C, 18 SEER: Frequency Chart of L/CC Difference based on Reverse Engineering Manufacturing Cos

Figure E.29S	Single Package Heat Pump, 13 SEER: Frequency Chart of LCC Difference	
	based on Reverse Engineering Manufacturing Costs	J-68
Figure E.30S	Single Package Heat Pump, 13 SEER: Cumulative Chart of LCC Difference	
	based on Reverse Engineering Manufacturing Costs	J-68
Figure E.31S	Single Package Heat Pump, 18 SEER: Frequency Chart of LCC Difference	
	based on Reverse Engineering Manufacturing Costs	J-69
Figure E.32S	Single Package Heat Pump, 18 SEER: Cumulative Chart of LCC Difference	
C	based on Reverse Engineering Manufacturing Costs	J-69
Figure F.1S	Split A/C, 11 SEER: Annual Savings and Costs based on Reverse	
	Engineering Manufacturing Costs	J-70
Figure F.2S	Split A/C, 12 SEER: Annual Savings and Costs based on Reverse	
	Engineering Manufacturing Costs	J-71
Figure F.3S	Split A/C, 13 SEER: Annual Savings and Costs based on Reverse	
	Engineering Manufacturing Costs	J-72
Figure F.4S	Split A/C, 18 SEER: Annual Savings and Costs based on Reverse	
8	Engineering Manufacturing Costs	J-73
Figure F.5S	Split HP, 11 SEER: Annual Savings and Costs based on Reverse	
	Engineering Manufacturing Costs	J-74
Figure F.6S	Split HP, 12 SEER: Annual Savings and Costs based on Reverse	
1180110 1 102	Engineering Manufacturing Costs	J-75
Figure F.7S	Split HP, 13 SEER: Annual Savings and Costs based on Reverse	0 , 0
1184101.75	Engineering Manufacturing Costs	J-76
Figure F.8S	Split HP, 18 SEER: Annual Savings and Costs based on Reverse	0 70
1184101.00	Engineering Manufacturing Costs	J-77
Figure F.9S	Package A/C, 11 SEER: Annual Savings and Costs based on Reverse	3 / /
1184101.75	Engineering Manufacturing Costs	J-78
Figure F.10S	Package A/C, 12 SEER: Annual Savings and Costs based on Reverse	3 70
1184101.108	Engineering Manufacturing Costs	J-79
Figure F.11S		0 17
1184101.115	Engineering Manufacturing Costs	J-80
Figure F.12S		• 00
118011011120	Engineering Manufacturing Costs	J-81
Figure F 13S	Package HP, 11 SEER: Annual Savings and Costs based on Reverse	3 01
1184101.135	Engineering Manufacturing Costs	J-82
Figure F 14S	Package HP, 12 SEER: Annual Savings and Costs based on Reverse	3 02
1184101.118	Engineering Manufacturing Costs	J-83
Figure F 150	Package HP, 13 SEER: Annual Savings and Costs based on Reverse	0 00
1 15010 1 .135	Engineering Manufacturing Costs	J-84
Figure F 169	Package HP, 18 SEER: Annual Savings and Costs based on Reverse	501
11guic 1.105	Engineering Manufacturing Costs	J-85
	Engineering manatating Costs	5 05
Figure L.3.1	Average LCCs for SAC 1.5 Ton TTW Units	L-25
Figure L.3.2	Percent of SAC 1.5 Ton TTW Unit Consumers with Net Costs, Impacts	
1 15u10 D.J.2	within ±2% Threshold, and Net Savings	L-25

Average LCCs for SAC 2.5 Ton TTW Units	. L-26
Percent of SAC 2.5 Ton TTW Unit Consumers with Net Costs, Impacts	
within ±2% Threshold, and Net Savings	. L-26
Average LCCs for PAC TTW Units	. L-27
Percent of PAC TTW Unit Consumers with Net Costs, Impacts	
within ±2% Threshold, and Net Savings	. L-27
Residential Space-Cooling Load Shapes used in 2000 version of NEMS	. M-3
Alternative Residential Space-Cooling Load Shapes for the North Region	. M-4
Alternative Residential Space-Cooling Load Shapes for the South Region	. M-5
Comparison of SEER 13 Average Heat Rate as Difference from AEO2000	M-19
Comparison of Higher Decrement Marginal Heat Rates for CAC-HP Trial	
Standard Level 3 for Selected Years	M-20
Comparison of Higher Decrement Marginal Heat Rates for CAC-HP Trial	
Standard Level 2 and 3 over Time	M-21
	Percent of SAC 2.5 Ton TTW Unit Consumers with Net Costs, Impacts within ±2% Threshold, and Net Savings Average LCCs for PAC TTW Units Percent of PAC TTW Unit Consumers with Net Costs, Impacts within ±2% Threshold, and Net Savings Residential Space-Cooling Load Shapes used in 2000 version of NEMS Alternative Residential Space-Cooling Load Shapes for the North Region Alternative Residential Space-Cooling Load Shapes for the South Region Comparison of SEER 13 Average Heat Rate as Difference from AEO2000 Comparison of Higher Decrement Marginal Heat Rates for CAC-HP Trial Standard Level 3 for Selected Years Comparison of Higher Decrement Marginal Heat Rates for CAC-HP Trial